Regular Polygon
- Regular polygon (a two-dimensional figure) is a polygon where all sides are congruent and all angles are congruent.
- Circumcircle is a circle that passes through all the vertices of a two-dimensional figure.
- Congruent is all sides having the same lengths and angles measure the same.
- Inscribed circle is the largest circle possible that can fit on the inside of a two-dimensional figure.
- Polygon (a two-dimensional figure) is a closed plane figure for which all sides are line segments and not necessarly congruent.
- See Artical Links - Geometric Properties of Structural Shapes
- Tags: Structural Steel
Regular Polygon Index
- Regular Polygon Types
- Area of a Regular Polygon
- Central Angle of a Regular Polygon
- Circumcircle Radius of a Regular Polygon
- Distance from Centroid of a Polygon
- Edge of a Regular Polygon
- Elastic Section Modulus of a Polygon
- Inscribed Radius of a Regular Polygon
- Number of Diagonals of a Regular Polygon
- Perimeter of a Regular Polygon
- Polar Moment of Inertia of a Polygon
- Radius of Gyration of a Polygon
- Second Moment of Area of a Rectangle
Regular Polygon Types
- Triangle - 3 sides - 60° interior angle
- Quadrilateral - 4 sides - 90° interior angle
- Pentagon - 5 sides - 108° interior angle
- Hexagon - 6 sides - 120° interior angle
- Heptagon - 7 sides - 128.571° interior angle
- Octagon - 8 sides - 135° interior angle
- Nonagon - 9 sides - 140° interior angle
- Decagon - 10 sides - 144° interior angle
- Hendecagon - 11 sides - 147.273° interior angle
- Dodecagon - 12 sides - 150° interior angle
- Triskaidecagon - 13 sides - 152.308° interior angle
- Tetrakaidecagon - 14 sides - 154.286° interior angle
- Pentadecagon - 15 sides - 156° interior angle
- Hexakaidecagon - 16 sides - 157.5° interior angle
- Heptadecagon - 17 sides - 158.824° interior angle
- Octakaidecagon - 18 sides - 160° interior angle
- Enneadecagon - 19 sides - 161.053° interior angle
- Icosagon - 20 sides - 162° interior angle
area of a Regular Polygon formulas |
||
\( A_{area} \;=\; a^2 \; n\;/\;4 \; tan( \frac{180}{n} ) \) \( A_{area} \;=\; R^2 \; n \; sin( \frac{360}{n} ) \;/\;2 \) \( A_{area} \;=\; r^2 \; n \; tan( \frac{180}{n} ) \) \( A_{area} \;=\; \frac{1}{4} \; a^2 \; n \; cot( \frac{\pi}{n} ) \) |
||
Symbol | English | Metric |
\( A_{area} \) = area | \( in^2 \) | \( mm^2 \) |
\( a \) = edge | \( in \) | \( mm \) |
\( r \) = inside radius (apothem) | \( in \) | \( mm \) |
\( n \) = number of edges | \( dimensionless \) | |
\( R \) = outside radius | \( in \) | \( mm \) |
\( P \) = perimeter | \( in \) | \( mm \) |
Central Angle of a Regular Polygon formulaCE |
||
\( CA \;=\; 360\;/\;n \) | ||
Symbol | English | Metric |
\( CA \) = central angle | \( deg \) | \( rad \) |
\( n \) = number of edges | \( dimensionless \) |
Circumcircle Radius of a Regular Polygon formula |
||
\( R \;=\; a\;/\;2 \; sin( \frac{180}{n} ) \) | ||
Symbol | English | Metric |
\( R \) = outside radius | \( in \) | \( mm \) |
\( a \) = edge | \( in \) | \( mm \) |
\( n \) = number of edges | \( dimensionless \) |
Distance from Centroid of a Polygon formulas |
||
\( C_x \;=\; R \) \( C_y \;=\; R \) |
||
Symbol | English | Metric |
\( C \) = distance from centroid | \( in \) | \( mm \) |
\( R \) = outside radius | \( in \) | \( mm \) |
Edge of a Regular Polygon formulas |
||
\( a \;=\; 2 \;r \; tan( \frac{180}{n} ) \) \( a \;=\; 2 \; R \; sin( \frac{180}{n} ) \) |
||
Symbol | English | Metric |
\( a \) = edge | \( in \) | \( mm \) |
\( r \) = inside radius (apothem) | \( in \) | \( mm \) |
\( R \) = outside radius | \( in \) | \( mm \) |
Elastic Section Modulus of a Polygon formula |
||
\( S \;=\; I_x \;/\; R \) | ||
Symbol | English | Metric |
\( S \) = elastic section modulus | \( in^3 \) | \( mm^3 \) |
\( I \) = moment of inertia | \( in^4 \) | \( mm^4 \) |
\( R \) = outside radius | \( in \) | \( mm \) |
Inscribed Radius of a Regular Polygon formulas |
||
\( r \;=\; a \;/\; 2\; tan( \frac{180}{n} ) \) \( r \;=\; R \; cos( \frac{180}{n} ) \) |
||
Symbol | English | Metric |
\( r \) = inside radius (apothem) | \( in \) | \( mm \) |
\( a \) = edge | \( in \) | \( mm \) |
\( n \) = number of edges | \( dimensionless \) | |
\( R \) = outside radius | \( in \) | \( mm \) |
Number of Diagonals of a Regular Polygon formula |
||
\( D' \;=\; n \; ( n - 3 ) \;/\;2 \) | ||
Symbol | English | Metric |
\( D' \) = diagonal | \( in \) | \( mm \) |
\( a \) = edge | \( in \) | \( mm \) |
\( n \) = number of edges | \( dimensionless \) |
Perimeter of a Regular Polygon formula |
||
\( P \;=\; a \; n \) | ||
Symbol | English | Metric |
\( P \) = perimeter | \( in \) | \( mm \) |
\( a \) = edge | \( in \) | \( mm \) |
\( n \) = number of edges | \( dimensionless \) |
Polar Moment of Inertia of a Polygon formula |
||
\( J_{z} \;=\; 2 \; A \; ( 6 \; R^2 - a^2 \;/\;24 ) \) | ||
Symbol | English | Metric |
\( J \) = torsional constant | \( in^4 \) | \( mm^4 \) |
\( a \) = edge | \( in \) | \( mm \) |
\( R \) = outside radius | \( in \) | \( mm \) |
Radius of Gyration of a Polygon formulas |
||
\( k_{x} \;=\; \sqrt{ 6 \; R^2 - a^2 \;/\;24 } \) \( k_{y} \;=\; \sqrt{ 6 \; R^2 - a^2 \;/\;24 } \) \( k_{z} \;=\; \sqrt{ k_{x}{^2} + k_{y}{^2} } \) |
||
Symbol | English | Metric |
\( k \) = radius of gyration | \( in \) | \( mm \) |
\( a \) = edge | \( in \) | \( mm \) |
\( R \) = outside radius | \( in \) | \( mm \) |
Second Moment of Area of a Rectangle formulas |
||
\( I_{x} \;=\; 2 \; A \; ( 6 \; R^2 - a^2 \;/\;24 ) \) \( I_{y} \;=\; 2 \; A \; ( 6 \; R^2 - a^2 \;/\;24 ) \) |
||
Symbol | English | Metric |
\( I \) = moment of inertia | \( in^4 \) | \( mm^4 \) |
\( a \) = edge | \( in \) | \( mm \) |
\( R \) = outside radius | \( in \) | \( mm \) |
Tags: Structural Steel