Linear Motion

on . Posted in Classical Mechanics

linear motion 1Linear motion, also called rectilinear motion, refers to the motion of an object in a straight line with a constant velocity or changing velocity.  In other words, the object moves in a single direction without any rotation or angular movement.  Examples of linear motion include a train moving along a straight track, a car moving in a straight line on a highway, or a ball thrown in a straight line.  Linear motion can be described mathematically using equations of motion, which relate the displacement, velocity, and acceleration of the object.

 

Acceleration Linear motion formula

\( \overrightarrow{a} \;=\;   \Delta v \;/\; \Delta t  \)     (Acceleration Linear Motion)

\( \Delta v \;=\; \overrightarrow{a}  \; \Delta t   \)

\( \Delta t \;=\;   \Delta v \;/\; \overrightarrow{a}  \)

Symbol English Metric
\( \overrightarrow{a} \) = Linear Acceleration \(ft\;/\;sec^2\) \(m\;/\;s^2\)
\( \Delta v \) = Velocity Differential \(ft\;/\;sec\) \(m\;/\;s\)
\( \Delta t \) = Time Differential \( sec \) \( s \)

 

Displacement Linear motion formula

\( \overrightarrow{d} \;=\; v_i \; t + \frac{1}{2} a\;t^2  \)     (Displacement Linear Motion)

\( v_i \;=\; ( \overrightarrow{d} \;/\; t )  -  \frac{ 1 }{ 2 } \; a \; t    \)

\( t \;=\; \sqrt{   2 \; \left( \overrightarrow{d} - v_i \; t \right) \;/\; a  }  \)

\( a \;=\;   2 \; \left( \overrightarrow{d} - v_i \; t \right) \;/\; t^2    \)

Symbol English Metric
\( \overrightarrow{d} \) = Linear Displacement \( ft \) \(m \)
\( v_i \) = Initial Velocity \(ft\;/\;sec\) \(m\;/\;s\)
\( t \) = Time \( sec \) \( s \)
\( a \) = Acceleration \(ft\;/\;sec^2\) \(m\;/\;s^2\)

 

Velocity Linear motion formula

\( \overrightarrow{v_f} \;=\; v_i + a \; t  \)     (Velocity Linear Motion)

\( v_i \;=\; \overrightarrow{v_f} - a \; t  \)

\( a \;=\;   \overrightarrow{v_f} - v_i \;/\; t \)

\( t \;=\;   \overrightarrow{v_f} - v_i \;/\; a \)

Symbol English Metric
\( \overrightarrow{v_f} \) = Linear Final Velocity \(ft\;/\;sec\) \(m\;/\;s\)
\( v_i \) = Initial Velocity \(ft\;/\;sec\) \(m\;/\;s\)
\( a \) = Acceleration \(ft\;/\;sec^2\) \(m\;/\;s^2\)
\( t \) = Time \( sec \) \( s \)

 

Piping Designer Logo 1 

Tags: Motion