Law of Conservation of Angular Momentum

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

angular momentumLaw of conservation of angular momentum states the angular moment of a system of particles around a fixed point is conserved if there is no net external torque around that point.

 

law of conservation of angular momentum formulas

\(\large{ \Rightarrow\; \Delta L =  0 }\) 
\(\large{ \Rightarrow\; \Delta L_i =  L_f }\) 
\(\large{ L =  I \; \omega }\) 

Where:

 Units English Metric
\(\large{ L  }\) = angular momentum (rotational momentum) \(\large{\frac{lbm-ft^2}{sec}}\) \(\large{\frac{kg-m^2}{s}}\)
\(\large{ \omega }\)  (Greek symbol omega) = angular velocity \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\)
\(\large{ L_f  }\) = final angular momentum \(\large{\frac{lbm-ft^2}{sec}}\) \(\large{\frac{kg-m^2}{s}}\)
\(\large{ L_i  }\) = initial angular momentum \(\large{\frac{lbm-ft^2}{sec}}\) \(\large{\frac{kg-m^2}{s}}\)
\(\large{ I  }\) = moment of inertia \(\large{ lbm-ft^2 }\)  \(\large{ kg-m^2 }\) 

 

P D Logo 1 

Tags: Equations for Energy Equations for Momentum Equations for Law of Conservation