Angular Momentum

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

angular momentumAngular momentum, abbreviated as L, also called rotational momentum or moment of momentum, is how much an object is rotating around a fixed point.  The angular momentun of a body is equal to the mass of the body multiplied by the cross product of the position vector of the particle with its vertical velocity. 

 

Angular Momentum formulas

\(\large{ L =  m \; v \; r }\)
\(\large{ L =  I \; \omega }\) 
\(\large{ L =  r \; p }\) 

Where:

 Units English Metric
\(\large{ L  }\) = angular momentum (rotational momentum)  \(\large{\frac{lbm-ft^2}{sec}}\)  \(\large{\frac{kg-m^2}{s}}\) 
\(\large{ \omega }\)  (Greek symbol omega) = angular velocity \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\)
\(\large{ I  }\) = moment of inertia \(\large{in^4}\) \(\large{m^4}\)
\(\large{ p  }\) = momentum \(\large{\frac{lbm-ft}{sec}}\) \(\large{\frac{kg-m}{s}}\)
\(\large{ m  }\) = mass \(\large{lbm}\) \(\large{kg}\)
\(\large{ r  }\) = radius \(\large{ft}\)  \(\large{m}\) 
\(\large{ v  }\) = velocity  \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)

 

P D Logo 1 

Tags: Equations for Momentum