Compression
Compression, abbreviated as K, is the force (pressure) acting on a material.
Compression formulas |
||
\(\large{ \Delta d = d_i - d_f }\) \(\large{ \Delta d = \epsilon_{di} \; d_i }\) \(\large{ \Delta d = \frac{ \mu \; \sigma }{ \lambda } \; d_i }\) \(\large{ \Delta d = \frac{ \mu \; p }{ \lambda \; A } \; d_i }\) \(\large{ \Delta l = l_f - l_i }\) \(\large{ \Delta l = \lambda \; l_i }\) \(\large{ \Delta l = \frac{ \sigma }{ \lambda } \; l_i }\) \(\large{ \Delta l = \frac{ p }{ \lambda \; A } \; l_i }\) |
||
Symbol | English | Metric |
\(\large{ \Delta d }\) = depth change | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ \Delta l }\) = length change | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ A }\) = area | \(\large{ in^2 }\) | \(\large{ mm^2 }\) |
\(\large{ d_f }\) = final depth | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ d_i }\) = initial depth | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ \lambda }\) (Greek symbol lambda) = elastic modulus | \(\large{\frac{lbf}{in^2}}\) | \(\large{Pa}\) |
\(\large{ l_f }\) = final length | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ l_i }\) = initial length | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ \mu }\) (Greek symbol mu) = Poisson's Ratio | \(\large{ dimensionless }\) | |
\(\large{ p }\) = pressure under consideration | \(\large{\frac{lbf}{in^2}}\) | \(\large{Pa}\) |
\(\large{ \epsilon }\) (Greek symbol epsilon) = strain | \(\large{\frac{in}{in}}\) | \(\large{\frac{mm}{mm}}\) |