Compression

on . Posted in Classical Mechanics

stress 2compression 1

Compression, abbreviated as K, is the force (pressure) acting on a material.

 

 

 

 

 

 

 

Compression formulas

\(\large{ \Delta d = d_i - d_f  }\) 

\(\large{ \Delta d =  \epsilon_{di} \; d_i  }\) 

\(\large{ \Delta d =  \frac{ \mu \; \sigma }{ \lambda } \; d_i  }\) 

\(\large{ \Delta d =  \frac{ \mu \; p }{ \lambda \; A } \; d_i  }\) 

\(\large{ \Delta l =  l_f - l_i  }\)

\(\large{ \Delta l =  \lambda \; l_i  }\)

\(\large{ \Delta l =  \frac{ \sigma }{ \lambda } \; l_i  }\)

\(\large{ \Delta l =  \frac{ p }{ \lambda \; A } \; l_i  }\) 

Symbol English Metric
\(\large{ \Delta d }\) = depth change \(\large{ in }\) \(\large{ mm }\)
\(\large{ \Delta l }\) = length change \(\large{ in }\) \(\large{ mm }\)
\(\large{ A }\) = area \(\large{ in^2 }\) \(\large{ mm^2 }\)
\(\large{ d_f }\) = final depth \(\large{ in }\) \(\large{ mm }\)
\(\large{ d_i }\) = initial depth \(\large{ in }\) \(\large{ mm }\)
\(\large{ \lambda }\)  (Greek symbol lambda) = elastic modulus \(\large{\frac{lbf}{in^2}}\) \(\large{Pa}\)
\(\large{ l_f }\) = final length \(\large{ in }\) \(\large{ mm }\)
\(\large{ l_i }\) = initial length \(\large{ in }\) \(\large{ mm }\)
\(\large{ \mu }\)  (Greek symbol mu) = Poisson's Ratio \(\large{ dimensionless }\)
\(\large{ p }\) = pressure under consideration \(\large{\frac{lbf}{in^2}}\) \(\large{Pa}\)
\(\large{ \epsilon }\)  (Greek symbol epsilon) = strain \(\large{\frac{in}{in}}\) \(\large{\frac{mm}{mm}}\)

 

Piping Designer Logo Slide 1

Tags: Strain and Stress Equations