Buoyancy Mass

Written by Jerry Ratzlaff on . Posted in Fluid Dynamics

bouyancy mass 2Buoyancy mass, abbreviated as \(m_b\), is the amount of matter an object has relative to the density of the liquid.

 

Buoyancy Mass formula

\(\large{ m_b =  m_o \; \left( 1 - \frac{\rho_f}{\rho_o}  \right)   }\)   

Where:

 Units English Metric
\(\large{ m_b }\) = buoyancy mass \(\large{ lbm }\)  \(\large{kg}\)
\(\large{ m_o }\) = true vacuum mass of the object \(\large{ lbm }\)  \(\large{kg}\)
\(\large{ \rho_o }\)  (Greek symbol rho) = density of object \(\large{\frac{lbm}{ft^3}}\) \(\large{\frac{kg}{m^3}}\)
\(\large{ \rho_f }\)  (Greek symbol rho) = density of surrounding fluid \(\large{\frac{lbm}{ft^3}}\) \(\large{\frac{kg}{m^3}}\)

 

P D Logo 1

Tags: Mass Equations Liquid Equations Buoyancy Equations