Skip to main content

Reynolds Number for Liquid

 

Reynolds Number for Liquid Formula

\( Re \;=\;  \dfrac{ 92.1\cdot SG \cdot Q }{ d \cdot \eta }\)     (Reynolds Number)

\( SG \;=\;  \dfrac{ Re \cdot d \cdot \eta  }{ 92.1\cdot Q }\)

\( Q \;=\;   \dfrac{ Re \cdot d \cdot \eta  }{ 92.1\cdot SG  }\)

\( d \;=\;  \dfrac{ 92.1\cdot SG \cdot Q }{ Re \cdot \eta }\)

\( \eta \;=\;  \dfrac{ 92.1\cdot SG \cdot Q }{ Re \cdot d }\)

Symbol English Metric
\( Re \) = Reynolds Number \( dimensionless \) \( dimensionless \)
\( SG \) = Liquid Specific Gravity Relative to Water (water = 1) \( dimensionless \) \( dimensionless \)
\( Q \) = Liquid Flow Rate \(ft^3\;/\;sec\) \(m^3\;/\;s\)
\( d \) = Inside Diameter of Pipe \( in\) \( mm \)
\( \eta \)  (Greek symbol eta)  = Liquid Viscosity \(lbf - sec\;/\;ft^2\) \(Pa-s\)

Reynolds Number is a dimensionless quantity used in fluid mechanics to predict the nature of fluid flow, whether it’s laminar, transitional, or turbulent.  For a liquid flowing through a pipe or around an object, it’s defined as the ratio of inertial forces to viscous forces.  The exact transition depends on pipe roughness or flow conditions.

P D Logo 1