Reynolds Number for Liquid Formula |
||
\( Re \;=\; \dfrac{ 92.1\cdot SG \cdot Q }{ d \cdot \eta }\) (Reynolds Number) \( SG \;=\; \dfrac{ Re \cdot d \cdot \eta }{ 92.1\cdot Q }\) \( Q \;=\; \dfrac{ Re \cdot d \cdot \eta }{ 92.1\cdot SG }\) \( d \;=\; \dfrac{ 92.1\cdot SG \cdot Q }{ Re \cdot \eta }\) \( \eta \;=\; \dfrac{ 92.1\cdot SG \cdot Q }{ Re \cdot d }\) |
||
Symbol | English | Metric |
\( Re \) = Reynolds Number | \( dimensionless \) | \( dimensionless \) |
\( SG \) = Liquid Specific Gravity Relative to Water (water = 1) | \( dimensionless \) | \( dimensionless \) |
\( Q \) = Liquid Flow Rate | \(ft^3\;/\;sec\) | \(m^3\;/\;s\) |
\( d \) = Inside Diameter of Pipe | \( in\) | \( mm \) |
\( \eta \) (Greek symbol eta) = Liquid Viscosity | \(lbf - sec\;/\;ft^2\) | \(Pa-s\) |
Reynolds Number is a dimensionless quantity used in fluid mechanics to predict the nature of fluid flow, whether it’s laminar, transitional, or turbulent. For a liquid flowing through a pipe or around an object, it’s defined as the ratio of inertial forces to viscous forces. The exact transition depends on pipe roughness or flow conditions.