Radius of Gyration of a Tapered Channel
Radius of Gyration of a Tapered Channel formulas |
||
\( k_x \;=\; \sqrt{ \dfrac{ \dfrac{1}{12} \cdot \left[ w\cdot l^3 + \dfrac{1}{8\cdot \dfrac{h - L}{2\cdot \left(w - t \right)}} \cdot \left( h^4 - L^4 \right) \right] }{ l \cdot t + a \cdot \left( s + n \right) } } \) \( k_y \;= \; \sqrt{ \dfrac{ \dfrac{1}{3} \cdot \left[ 2\cdot s\cdot w^3\cdot L\cdot t^3 + \dfrac{\dfrac{h - L}{2\cdot \left(w - t \right)}}{2} \cdot \left( w^4 - t^4 \right) \right] - A \cdot \left( w - y \right)^2 }{ l\cdot t + a\cdot \left( s + n \right) } } \) \( k_z \;=\; \sqrt{ k_{x}{^2} + k_{y}{^2} } \) \( k_{x1} \;=\; \sqrt{ \dfrac{ I_{x1} }{A} } \) \( k_{y1} \;=\; \sqrt{ \dfrac{ I_{y1} }{A} } \) \( k_{z1} \;=\; \sqrt{ k_{x1}{^2} + k_{y1}{^2} } \) |
||
Symbol | English | Metric |
\( k \) = radius of gyration | \( in \) | \( mm \) |
\( h \) = height | \( in \) | \( mm \) |
\( l \) = height | \( in \) | \( mm \) |
\( L \) = height | \( in \) | \( mm \) |
\( s \) = thickness | \( in \) | \( mm \) |
\( t \) = thickness | \( in \) | \( mm \) |
\( a \) = width | \( in \) | \( mm \) |
\( w \) = width | \( in \) | \( mm \) |