Radius of Gyration of a Cross
Radius of Gyration of a Cross formulas |
||
\( k_{x} \;=\; \sqrt{ \dfrac{ t\cdot l^3 + s^3 \cdot \left( w - t \right) }{ 12 \cdot \left[ l\cdot t + s \cdot \left( w - t \right) \right] } } \) \( k_{y} \;=\; \sqrt{ \dfrac{ s\cdot w^3 + t^3 \cdot \left( l - s \right) }{ 12 \cdot \left[ l\cdot t + s \cdot \left( w - t \right) \right] } } \) \( k_{z} \;=\; \sqrt{ k_{x}{^2} + k_{y}{^2} } \) \( k_{x1} \;=\; \sqrt{ \dfrac { I_{x1} }{ A } } \) \( k_{y1} \;=\; \sqrt{ \dfrac { I_{y1} }{ A } } \) \( k_{z1} \;=\; \sqrt{ k_{x1}{^2} + k_{y1}{^2} } \) |
||
Symbol | English | Metric |
\( k \) = radius of gyration | \( in \) | \( mm \) |
\( A \) = area | \( in^2 \) | \( mm^2 \) |
\( l \) = height | \( in \) | \( mm \) |
\( s \) = thickness | \( in \) | \( mm \) |
\( t \) = thickness | \( in \) | \( mm \) |
\( w \) = width | \( in \) | \( mm \) |