Skip to main content

Radius of Gyration of a Cross

 

Radius of Gyration of a Cross formulas

\( k_{x} \;=\;   \sqrt{  \dfrac{  t\cdot  l^3 +  s^3 \cdot \left( w - t \right)    }{ 12 \cdot \left[  l\cdot t +  s \cdot \left( w - t \right) \right]    }   }   \) 

\( k_{y} \;=\;   \sqrt{  \dfrac{  s\cdot w^3 +  t^3 \cdot \left( l - s \right)  }{ 12 \cdot \left[  l\cdot t +  s \cdot \left( w - t \right) \right]    }   }   \) 

\( k_{z} \;=\;     \sqrt{  k_{x}{^2} + k_{y}{^2}  } \) 

\( k_{x1} \;=\;   \sqrt{  \dfrac { I_{x1} }{ A  }   }   \)

\( k_{y1} \;=\;    \sqrt{  \dfrac { I_{y1} }{ A  }   }   \)

\( k_{z1} \;=\;    \sqrt{  k_{x1}{^2} + k_{y1}{^2}  } \)

Symbol English Metric
\( k \) = radius of gyration \( in \) \( mm \)
\( A \) = area \( in^2 \) \( mm^2 \)
\( l \) = height \( in \) \( mm \)
\( s \) = thickness \( in \) \( mm \)
\( t \) = thickness \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

cross beam 1

Piping Designer Logo 1