Simple Beam - Uniform Load Partially Distributed at Any Point
- See Article Link - Beam Design Formulas
- Tags: Beam Support
diagram Symbols
- Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
- Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.
Simple Beam - Uniform Load Partially Distributed at Any Point formulas |
||
\( R_1 \;=\; V_1 \; ( max. \;when\; a < c ) \;=\; (w \;b\;/\;2\;L) \; ( 2\;c + b ) \) \( R_2 \;=\; V_2 \; ( max. \;when\; a > c ) \;=\; ( w \;b \;/\;2\;L) \; ( 2\;a + b ) \) \( V_x \; [ \; a < x < ( a + b ) \;] \;=\; R_1 - [\;w \; ( x - a )\;] \) \( M_{max} \; [\; at \; x = a + (R_1\;/\;w) \;] \;=\; R_1 \; [\; a + ( R_1 \;/\; 2\;w ) \;] \) \( M_x \; ( x < a ) \;=\; R_1 \;x \) \( M_x \; [ \; a < x < \; ( a + b ) \;] \;=\; (R_1 \;x) - [\; (w\;/\;2) \; ( x - a )^2 \;] \) \( M_x \; [ \; x > ( a + b ) \;] \;=\; R_2 \; ( L - x ) \) |
||
Symbol | English | Metric |
\( R \) = reaction load at bearing point | \(lbf\) | \(N\) |
\( V \) = maximum shear force | \(lbf\) | \(N\) |
\( M \) = maximum bending moment | \(lbf - in\) | \(N - mm\) |
\( w \) = load per unit length | \(lbf\;/\;in\) | \(N\;/\;m\) |
\( L \) = span length of the bending member | \(in\) | \(mm\) |
\( x \) = horizontal distance from reaction to point on beam | \(in\) | \(mm\) |
\( a, b, c \) = width and seperation of UDL | \(in\) | \(mm\) |
Tags: Beam Support