Simple Beam - Concentrated Load at Center

on . Posted in Structural Engineering

diagram Symbols

  • Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
  • Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

sb 7D 1

Simple Beam - Concentrated Load at Center formulas

\(\large{ R = V =  \frac{P}{2}  }\)

\(\large{ M_{max} \; \left(at\; point \;of\; load \right) = \frac{P\;L}{4}  }\)

\(\large{ M_x   \;  \left(  x < \frac{L}{2} \right)   =  \frac{ P\;x}{2}    }\)

\(\large{ \Delta_{max} \; \left(at \;point\; of\; load \right) =  \frac{ P\;L^3}{48\; \lambda\; I}  }\)

\(\large{ \Delta_x   \;  \left(  x < \frac{L}{2}   \right)  =  \frac{P\;x}{48 \;\lambda\; I}  \; \left(  3\;L^2 - 4\;x^2  \right)     }\)

S B Concentrated Load at Center - Solve for R

\(\large{ R = V =  \frac{P}{2}  }\)

total concentrated load, P

S B Concentrated Load at Center - Solve for Mmax

\(\large{ M_{max} \; \left(at\; point \;of\; load \right) = \frac{P\;L}{4}  }\)

total concentrated load, P
span length, L

S B Concentrated Load at Center - Solve for Mx

\(\large{ M_x   \;  \left(  x < \frac{L}{2} \right)   =  \frac{ P\;x}{2}    }\)

total concentrated load, P
distance from reaction, x

S B Concentrated Load at Center - Solve for Δmax

\(\large{ \Delta_{max} \; \left(at \;point\; of\; load \right) =  \frac{ P\;L^3}{48\; \lambda\; I}  }\)

total concentrated load, P
span length, L
modulus of elasticity, λ
second moment of area, I

S B Concentrated Load at Center - Solve for Δx

\(\large{ \Delta_x   \;  \left(  x < \frac{L}{2}   \right)  =  \frac{P\;x}{48 \;\lambda\; I}  \; \left(  3\;L^2 - 4\;x^2  \right)     }\)

total concentrated load, P
distance from reaction, x
modulus of elasticity, λ
second moment of area, I
span length, L

Symbol English Metric
\(\large{ R }\) = reaction load at bearing point \(\large{lbf}\) \(\large{N}\)
\(\large{ V }\) = maximum shear force \(\large{lbf}\) \(\large{N}\)
\(\large{ M }\) = maximum bending moment \(\large{lbf-in}\) \(\large{N-mm}\)
\(\large{ \Delta }\) = deflection or deformation \(\large{in}\) \(\large{mm}\)
\(\large{ P }\) = total concentrated load \(\large{lbf}\) \(\large{N}\)
\(\large{ L }\) = span length of the bending member \(\large{in}\) \(\large{mm}\)
\(\large{ x }\) = horizontal distance from reaction to point on beam \(\large{in}\) \(\large{mm}\)
\(\large{ \lambda  }\)   (Greek symbol lambda) = modulus of elasticity \(\large{\frac{lbf}{in^2}}\) \(\large{Pa}\)
\(\large{ I }\) = second moment of area (moment of inertia) \(\large{in^4}\) \(\large{mm^4}\)

 

Piping Designer Logo Slide 1

 

Tags: Beam Support Equations