Simple Beam - Concentrated Load at Any Point
- See Article Link - Beam Design Formulas
- Tags: Beam Support
diagram Symbols
- Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
- Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.
Simple Beam - Concentrated Load at Any Point formulas |
||
\( R_1 \;=\; V_1 \; ( max.\; when \;\; a < b ) \;=\; P\;b\;/\;L \) \( R_2 \;=\; V_2 \; ( max.\; when \;\; a > b ) \;=\; P\;a\;/\;L \) \( M_{max} \; (at \;point \;of \;load ) \;=\; P\;a\;b \;/\; L \) \( M_x \; ( x < a ) \;=\; P\;b\;x \;/\; L \) \( \Delta_a \; (at \;point \;of \;load ) \;=\; P\;a^2\;b^2 \;/\; 3\; \lambda \;I \;L \) \( \Delta_x \; ( x < a ) \;=\; ( P\;b\;x \;/\; 6\; \lambda \;I \;L ) \; ( L^2 - b^2 - x^2 ) \) \( \Delta_{max} \; (at \; x = \sqrt{ \frac{ a\; ( a \;+\; 2\;b ) }{3} } \; when \; a > b ) \;=\; P\;a\;b \; ( a + 2\;b) \; \sqrt{ 3\;a \; ( a + 2\;b ) } \;/\; 27\; \lambda \;I \;L \) |
||
Symbol | English | Metric |
\( R \) = reaction load at bearing point | \(lbf\) | \(N\) |
\( V \) = maximum shear force | \(lbf\) | \(N\) |
\( M \) = maximum bending moment | \(lbf - in\) | \(N - mm\) |
\( \Delta \) = deflection or deformation | \(in\) | \(mm\) |
\( a, b \) = distance to point load | \(in\) | \(mm\) |
\( P \) = total concentrated load | \(lbf\) | \(N\) |
\( L \) = span length of the bending member | \(in\) | \(mm\) |
\( x \) = horizontal distance from reaction to point on beam | \(in\) | \(mm\) |
\( \lambda \) (Greek symbol lambda) = modulus of elasticity | \(lbf\;/\;in^2\) | \(Pa\) |
\( I \) = second moment of area (moment of inertia) | \(in^4\) | \(mm^4\) |
Tags: Beam Support