Simple Beam - Concentrated Load at Any Point
- See Article - Beam Design Formulas
Simple Beam - Concentrated Load at Any Point formulas |
||
R_1 \;=\; V_1 \; ( max.\; when \;\; a < b ) \;=\; \dfrac{ P \cdot b }{ L } R_2 \;=\; V_2 \; ( max.\; when \;\; a > b ) \;=\; \dfrac{ P \cdot a }{ L } M_{max} \; (at \;point \;of \;load ) \;=\; \dfrac{ P \cdot a \cdot b }{ L } M_x \; ( x < a ) \;=\; \dfrac{ P \cdot b \cdot x }{ L } \Delta_a \; (at \;point \;of \;load ) \;=\; \dfrac{ P \cdot a^2 \cdot b^2 }{ 3 \cdot \lambda \cdot I \cdot L } \Delta_x \; ( x < a ) \;=\; \dfrac{ P \cdot b \cdot x }{ 6\cdot \lambda \cdot I \cdot L } \cdot ( L^2 - b^2 - x^2 ) \Delta_{max} \; (at \; x = \sqrt{ \frac{ a\; ( a \;+\; 2\;b ) }{3} } \; when \; a > b ) \;=\; \dfrac{ P\cdot a\cdot b \cdot ( a + 2\cdot b) \cdot \sqrt{ 3\cdot a \cdot ( a + 2\cdot b ) } }{ 27\cdot \lambda \cdot I \cdot L } |
||
Symbol | English | Metric |
R = reaction load at bearing point | lbf | N |
V = maximum shear force | lbf | N |
M = maximum bending moment | lbf - in | N - mm |
\Delta = deflection or deformation | in | mm |
a, b = distance to point load | in | mm |
P = total concentrated load | lbf | N |
L = span length of the bending member | in | mm |
x = horizontal distance from reaction to point on beam | in | mm |
\lambda (Greek symbol lambda) = modulus of elasticity | lbf\;/\;in^2 | Pa |
I = second moment of area (moment of inertia) | in^4 | mm^4 |
Diagram Symbols
Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.