Skip to main content

Simple Beam - Concentrated Load at Any Point

Simple Beam - Concentrated Load at Any Point formulas

R_1 \;=\; V_1 \; ( max.\; when \;\; a < b ) \;=\; \dfrac{ P \cdot b }{ L }    

R_2 \;=\; V_2 \; ( max.\; when \;\; a > b ) \;=\; \dfrac{ P \cdot a }{ L }   

M_{max} \;  (at \;point \;of \;load )  \;=\;  \dfrac{ P \cdot a \cdot b }{ L } 

M_x \; (  x < a )  \;=\; \dfrac{ P \cdot b \cdot x }{ L } 

\Delta_a  \; (at \;point \;of \;load )  \;=\; \dfrac{ P \cdot a^2 \cdot b^2 }{ 3 \cdot \lambda \cdot I \cdot L  }

  \Delta_x  \; (  x < a )  \;=\; \dfrac{ P \cdot b \cdot x }{ 6\cdot \lambda \cdot I \cdot L } \cdot (  L^2 - b^2 - x^2 )   

\Delta_{max} \; (at \; x = \sqrt{  \frac{ a\; ( a \;+\; 2\;b )  }{3}  } \; when \;  a > b )  \;=\;  \dfrac{ P\cdot a\cdot b \cdot (  a + 2\cdot b) \cdot \sqrt{ 3\cdot a \cdot ( a + 2\cdot b ) }   }{ 27\cdot  \lambda \cdot I  \cdot L  }

Symbol English Metric
R = reaction load at bearing point lbf N
V = maximum shear force lbf N
M = maximum bending moment lbf - in N - mm
\Delta = deflection or deformation in mm
a, b = distance to point load in mm
P = total concentrated load lbf N
L = span length of the bending member in mm
x = horizontal distance from reaction to point on beam in mm
\lambda    (Greek symbol lambda) = modulus of elasticity lbf\;/\;in^2 Pa
I = second moment of area (moment of inertia) in^4 mm^4

sb 8D 1 

 

 

 

 

 

 

 

Diagram Symbols

Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

Piping Designer Logo Slide 1