Simple Beam - Concentrated Load at Any Point

on . Posted in Structural Engineering

sb 8D

 

Simple Beam - Concentrated Load at Any Point formulas

\(\large{ R_1 = V_1 \; \left( max.\; when \;\; a < b  \right)  \;\;=\;\; \frac{P\;b}{L}      }\)

\(\large{ R_2 = V_2 \; \left( max.\; when \;\; a > b  \right) \;\;=\;\; \frac{ P\;a}{L}     }\)

\(\large{ M_{max} \;  \left(at \;point \;of \;load \right)  \;\;=\;\;   \frac{ P\;a\;b }{ L }   }\)

\(\large{ M_x \; \left(  x < a \right)  \;\;=\;\;   \frac{ P\;b\;x }{ L }   }\)

\(\large{ \Delta_a  \; \left(at \;point \;of \;load \right)  \;\;=\;\;  \frac{ P\;a^2\;b^2 }{ 3\; \lambda \;I  \;L }   }\)

\(\large{  \Delta_x  \; \left(  x < a \right)  \;\;=\;\;  \frac{ P\;b\;x }{ 6\; \lambda \;I  \;L } \;  \left(  L^2 - b^2 - x^2  \right)       }\)

\(\large{ \Delta_{max} \; \left(at \; x = \sqrt{   \frac{ a\; \left(  a \;+\; 2\;b  \right)  }{3}  } \; when \;  a > b \right)  \;\;=\;\;  \frac{ P\;a\;b \; \left(  a \;+\; 2\;b  \right) \; \sqrt{ 3\;a \; \left(  a \;+\; 2\;b  \right)  }    } { 27\; \lambda \;I  \;L }   }\)

Symbol English Metric
\(\large{ \Delta }\) = deflection or deformation \(\large{in}\) \(\large{mm}\)
\(\large{ a, b }\) = distance to point load \(\large{in}\) \(\large{mm}\)
\(\large{ x }\) = horizontal distance from reaction to point on beam \(\large{in}\) \(\large{mm}\)
\(\large{ M }\) = maximum bending moment \(\large{lbf-in}\) \(\large{N-mm}\)
\(\large{ V }\) = maximum shear force \(\large{lbf}\) \(\large{N}\)
\(\large{ \lambda  }\)   (Greek symbol lambda) = modulus of elasticity \(\large{\frac{lbf}{in^2}}\) \(\large{Pa}\)
\(\large{ R }\) = reaction load at bearing point \(\large{lbf}\) \(\large{N}\)
\(\large{ I }\) = second moment of area (moment of inertia) \(\large{in^4}\) \(\large{mm^4}\)
\(\large{ L }\) = span length of the bending member \(\large{in}\) \(\large{mm}\)
\(\large{ P }\) = total concentrated load \(\large{lbf}\) \(\large{N}\)

 

diagrams

  • Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
  • Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

Article Links

 

 

 

 

 

 

 

 

 

Piping Designer Logo Slide 1

 

 

Tags: Beam Support Equations