Skip to main content

Simple Beam - Concentrated Load at Any Point

Diagram Symbols

Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

sb 8D

Simple Beam - Concentrated Load at Any Point formulas

\( R_1 \;=\; V_1 \; ( max.\; when \;\; a < b ) \;=\; \dfrac{ P \cdot b }{ L }     \)

\( R_2 \;=\; V_2 \; ( max.\; when \;\; a > b ) \;=\; \dfrac{ P \cdot a }{ L }    \)

\( M_{max} \;  (at \;point \;of \;load )  \;=\;  \dfrac{ P \cdot a \cdot b }{ L }  \)

\( M_x \; (  x < a )  \;=\; \dfrac{ P \cdot b \cdot x }{ L }  \)

\( \Delta_a  \; (at \;point \;of \;load )  \;=\; \dfrac{ P \cdot a^2 \cdot b^2 }{ 3 \cdot \lambda \cdot I \cdot L  } \)

\(  \Delta_x  \; (  x < a )  \;=\; \dfrac{ P \cdot b \cdot x }{ 6\cdot \lambda \cdot I \cdot L } \cdot (  L^2 - b^2 - x^2 )    \)

\( \Delta_{max} \; (at \; x = \sqrt{  \frac{ a\; ( a \;+\; 2\;b )  }{3}  } \; when \;  a > b )  \;=\;  \dfrac{ P\cdot a\cdot b \cdot (  a + 2\cdot b) \cdot \sqrt{ 3\cdot a \cdot ( a + 2\cdot b ) }   }{ 27\cdot  \lambda \cdot I  \cdot L  }\)

Symbol English Metric
\( R \) = reaction load at bearing point \(lbf\) \(N\)
\( V \) = maximum shear force \(lbf\) \(N\)
\( M \) = maximum bending moment \(lbf - in\) \(N - mm\)
\( \Delta \) = deflection or deformation \(in\) \(mm\)
\( a, b \) = distance to point load \(in\) \(mm\)
\( P \) = total concentrated load \(lbf\) \(N\)
\( L \) = span length of the bending member \(in\) \(mm\)
\( x \) = horizontal distance from reaction to point on beam \(in\) \(mm\)
\( \lambda  \)   (Greek symbol lambda) = modulus of elasticity \(lbf\;/\;in^2\) \(Pa\)
\( I \) = second moment of area (moment of inertia) \(in^4\) \(mm^4\)

 

Piping Designer Logo Slide 1