Beam Fixed at One End - Concentrated Load at Center

on . Posted in Structural Engineering

diagram Symbols

  • Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
  • Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

feoe 2A

Beam Fixed at One End - Concentrated Load at Center formulas

\( R_1 \;=\; V_1 \;=\; 5\;P\;/\;16 \) 

\( R_2 \;=\; V_2 max \;=\; 11\;P\;/\;16 \) 

\( M_{max} \; (at \;fixed \;end ) \;=\; 3\;P\;L\;/\;16 \) 

\( M_1  \; (at\; point\; of \;load ) \;=\; 5\;P\;L\;/\;32 \)

\( M_x  \; (  x < \frac {L}{2} )  \;=\; 5\;P\;x\;/\;16 \)

\( M_x  \; ( x > \frac {L}{2} )  \;=\; P\; [\; ( L\;/\;2)  - (11\;x\;/\;16) \;]  \)

\( \Delta_x \; (at\; point\; of\; load )  \;=\; 7\;P\;L^3\;/\;768\; \lambda\; I  \)

\( \Delta_x  \; (  x < \frac {L}{2} )  \;=\; ( P\;x\;/\;96 \;\lambda\; I) \; ( 3\;L^2 - 5\;x^2 )    \)

\( \Delta_x  \;  ( x > \frac {L}{2} )  \;=\; ( P\;/\;96 \;\lambda\; I ) \; ( x - L )^2 \; ( 11\;x - 2\;L )   \)

\( \Delta_{max}  \;  ( at \; x = L \; \left( \frac{1}{5} \right)^{\frac{1}{2}} )  \;=\; P\;L^3\;/\;48\; \lambda\; I \; \left( 5 \right)^{\frac{1}{2}}      \)

Symbol English Metric
\( R \) = reaction load at bearing point \(lbf\) \(N\)
\( V \) = maximum shear force \(lbf\) \(N\)
\( M \) = maximum bending moment \(lbf - in\) \(N - mm\)
\( \Delta \) = deflection or deformation \(in\) \(mm\)
\( P \) = total concentrated load \(lbf\) \(N\)
\( L \) = span length of the bending member \(in\) \(mm\)
\( x \) = horizontal distance from reaction to point on beam \(in\) \(mm\)
\( \lambda \)   (Greek symbol lambda) = modulus of elasticity \(lbf\;/\;in^2\) \(Pa\)
\( I \) = second moment of area (moment of inertia) \(in^4\) \(mm^4\)

 

Piping Designer Logo 1

Tags: Beam Support