Beam Fixed at One End - Concentrated Load at Any Point

on . Posted in Structural Engineering

diagram Symbols

  • Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
  • Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

feoe 3A

Beam Fixed at One End - Concentrated Load at any point formulas

\( R_1 \;=\; V_1 \;=\; (P\;b^2\;/\;2\;L^3) \; (  a + 2\;L )  \) 

\( R_2 \;=\; V_2  \;=\; (P\;a\;/\;2\;L^3) \; (  3\;L^2 - a^2 )  \) 

\( M_1 \; (at\; point\; of \;load )  \;=\; R_1 \;a  \) 

\( M_2 \; (at\; fixed \;end ) \;=\; (P\;a\;b\;/\;2\;L^2)  \; ( a +L )  \)

\( M_x \; ( x < a ) \;=\; R_1\; x  \)

\( M_x  \; ( x > a ) \;=\; R_1 \;x - [\; P\; ( x - a ) \;] \)

\( \Delta_{max}  \; ( at \;x = L \;  \frac{ L^2 \;+\; a^2 }{ 3\;L^2 \;-\; a^2 } \; when\; a < 0.414 \;L )  \;=\; (P\;a\;/\;3\; \lambda\; I ) \;  \frac{ ( L^2 \;-\; a^2 ) ^3 }{ ( 3\;L^2 \;- \;a^2 ) ^2 }   \)

\( \Delta_{max} \; ( at \;x = L \;\sqrt{ \frac{ a }{ 2\;L \;+\; a } } \; when\; a > 0.414 \;L )  \;=\; (P\;a\;b^2\;/\;6\; \lambda\; I )  \; \sqrt{  a \;/\; 2\;L + a }  \)

\( \Delta_a \; (at\; point\; of\; load ) \;=\; ( P\;a^3 \;b^2\;/\;12\; \lambda\; I \;L^3) \; ( 3\;L + b )   \)

\( \Delta_x  \; ( x < a ) \;=\; ( P\;b^2\; x\;/\;12 \;\lambda\; I \;L^3) \; ( 3\;a\;L^2 - 2\;L\;x^2 - a\;x^2 )  \)

\( \Delta_x  \; ( x > a ) \;=\; ( P\;a\;/\;12\; \lambda\; I \;L^3) \; ( L - x )^2 \; ( 3\;L^2 \;x - a^2 \;x   -  2\;a^2 \;L )   \)

Symbol English Metric
\( R \) = Reaction Load at Bearing Point \(lbf\) \(N\)
\( V \) = Maximum Shear Force \(lbf\) \(N\)
\( M \) = Maximum Bending Moment \(lbf - in\) \(N - mm\)
\( \Delta \) = Deflection or Deformation \(in\) \(m\)
\( P \) = Total Concentrated Load \(lbf\) \(N\)
\( a, b \) = Length to Point Load \(in\) \(m\)
\( L \) = Span Length of the Bending Member \(in\) \(m\)
\( x \) = Horizontal Distance from Reaction to Point on Beam \(in\) \(m\)
\( \lambda \)   (Greek symbol lambda) = Modulus of Elasticity \(lbf\;/\;in^2\) \(Pa\)
\( I \) = Eecond Moment of Area (Moment of Inertia) \(in^4\) \(mm^4\)

 

Piping Designer Logo Slide 1

Tags: Beam Support