Overhanging Beam - Point Load on Beam End

on . Posted in Structural Engineering

ob 5A

Article Links

 

 

 

 

 

 

 

 

 

 

 

 

Overhanging Beam - Point Load on Beam End formulas

\(\large{ R_1 = V_1 \;\;=\;\; \frac{P\;a}{L}    }\) 

\(\large{ R_2 = V_1 + V_2 \;\;=\;\;  \frac{ P }{L}  \; \left( L + a  \right)     }\) 

\(\large{ V_2  \;\;=\;\;   P   }\) 

\(\large{ M_{max}  \; \left( at \;R_2 \right)    \;\;=\;\;  P\;a   }\)

\(\large{ M_x    \;  \left(between\; supports \right)  \;\;=\;\;  \frac{P\;a\;x}{L}  }\) 

\(\large{ M_{x_1}    \;  \left(for \;overhang \right)  \;\;=\;\;    P  \left(  a - x_1 \right)    }\)

\(\large{ \Delta_x    \; \left(between\; supports \right)  \;\;=\;\;    \frac{ -\;P\;a\;x }{6\; \lambda \;I\;L}  \; \left( L^2 - x^2  \right)    }\)

\(\large{ \Delta_{x_1}    \; \left(overhang \right)   \;\;=\;\;   \frac{ P\;x_1 }{6\; \lambda\; I }  \; \left( 2\;a\;L + 3\;a\;x_1 - x_{1}{^2}  \right)   }\)

\(\large{ \Delta_{max}  \; \left(for\;overhang\; at\;  x_1 = a \right)   \;\;=\;\;   \frac{ P\;a^2 }{3\; \lambda \;I } \;  \left( L + a  \right)   }\)

\(\large{ \Delta_{max}  \;  \left( between\; supports\; at \;x = \frac{L}{\sqrt{3}}   \right)    \;\;=\;\;   \frac{ -\;P\;a\;L^2 }{9\; \sqrt{3} \; \lambda\; I }  \;\;=\;\;  0.06415 \; \frac{ P\;a\;L^2 }{ \lambda\; I }   }\)

Symbol English Metric
\(\large{ \Delta }\) = deflection or deformation \(\large{in}\) \(\large{mm}\)
\(\large{ x }\) = horizontal distance from reaction to point on beam \(\large{in}\) \(\large{mm}\)
\(\large{ M }\) = maximum bending moment \(\large{lbf-in}\) \(\large{N-mm}\)
\(\large{ V }\) = maximum shear force \(\large{lbf}\) \(\large{N}\)
\(\large{ \lambda  }\)   (Greek symbol lambda) = modulus of elasticity \(\large{\frac{lbf}{in^2}}\) \(\large{Pa}\)
\(\large{ R }\) = reaction load at bearing point \(\large{lbf}\) \(\large{N}\)
\(\large{ I }\) = second moment of area (moment of inertia) \(\large{in^4}\) \(\large{mm^4}\)
\(\large{ L }\) = span length of the bending member \(\large{in}\) \(\large{mm}\)
\(\large{ P }\) = total concentrated load \(\large{lbf}\) \(\large{N}\)

 

diagrams

  • Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
  • Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

Piping Designer Logo Slide 1

 

Tags: Beam Support Equations