Overhanging Beam - Point Load on Beam End
- See Article Link - Beam Design Formulas
- Tags: Beam Support
diagram Symbols
- Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
- Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.
Overhanging Beam - Point Load on Beam End formulas |
||
\( R_1 \;=\; V_1 \;=\; P\;a\;/\;L \) \( R_2 \;=\; V_1 + V_2 \;=\; ( P \;/\;L) \; ( L + a ) \) \( V_2 \;=\; P \) \( M_{max} \; ( at \;R_2 ) \;=\; P\;a \) \( M_x \; (between\; supports ) \;=\; P\;a\;x\;/\;L \) \( M_{x_1} \; (for \;overhang ) \;=\; P\; ( a - x_1 ) \) \( \Delta_x \; (between\; supports ) \;=\; ( -(P\;a\;x) \;/\;6\; \lambda \;I\;L) \; ( L^2 - x^2 ) \) \( \Delta_{x_1} \; (overhang ) \;\;=\;\; ( P\;x_1 \;/\;6\; \lambda\; I ) \; ( 2\;a\;L + 3\;a\;x_1 - x_{1}{^2} ) \) \( \Delta_{max} \; ( for\;overhang\; at\; x_1 = a ) \;=\; ( P\;a^2 \;/\;3\; \lambda \;I ) \; ( L + a ) \) \( \Delta_{max} \; ( between\; supports\; at \;x = \frac{L}{\sqrt{3}} ) \;=\; \frac{ -(P\;a\;L^2) }{9\; \sqrt{3} \; \lambda\; I } \;\;=\;\; 0.06415 \; ( P\;a\;L^2 \;/\; \lambda\; I ) \) |
||
Symbol | English | Metric |
\( \Delta \) = deflection or deformation | \(in\) | \(mm\) |
\( x \) = horizontal distance from reaction to point on beam | \(in\) | \(mm\) |
\( M \) = maximum bending moment | \(lbf-in\) | \(N-mm\) |
\( V \) = maximum shear force | \(lbf\) | \(N\) |
\( \lambda \) (Greek symbol lambda) = modulus of elasticity | \(lbf\;/\;in^2\) | \(Pa\) |
\( R \) = reaction load at bearing point | \(lbf\) | \(N\) |
\( I \) = second moment of area (moment of inertia) | \(in^4\) | \(mm^4\) |
\( L \) = span length of the bending member | \(in\) | \(mm\) |
\( P \) = total concentrated load | \(lbf\) | \(N\) |
Tags: Beam Support