Two Span Continuous Beam - Equal Spans, Concentrated Load at Center of One Span
- See Article Link - Beam Design Formulas
- Tags: Beam Support
diagram Symbols
- Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
- Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.
Two Span Continuous Beam - Equal Spans, Concentrated Load at Center of One Span formulas |
||
\( R_1 \;=\; V_1 \;=\; 13\;P\;/\;32 \) \( R_2 \;=\; V_2 + V_3 \;=\; 11\;P\;/\;16 \) \( R_3 \;=\; V_3 \;=\; 3\;P\;/\;32 \) \( V_2 \;=\; 19\;P\;/\;32 \) \( M_{max} \; (at \;point \;of \;load ) \;=\; 13\;P\;L\;/\;64 \) \( M_{max} \; (at \;support \; R_2 ) \;=\; 3\;P\;L\;/\;32 \) \( \Delta_{max} \; ( 0.408\;L \; from \;R_1) \;=\; 0.015 \; (P\;L^3\;/\; \lambda \; I ) \) |
||
Symbol | English | Metric |
\( \Delta \) = deflection or deformation | \(in\) | \(mm\) |
\( M \) = maximum bending moment | \(lbf-in\) | \(N-mm\) |
\( V \) = maximum shear force | \(lbf\) | \(N\) |
\( \lambda \) (Greek symbol lambda) = modulus of elasticity | \(lbf\;/\;in^2\) | \(Pa\) |
\( I \) = second moment of area (moment of inertia) | \(in^4\) | \(mm^4\) |
\( R \) = reaction load at bearing point | \(lbf\) | \(N\) |
\( L \) = span length under consideration | \(in\) | \(mm\) |
\( P \) = total concentrated load | \(lbf\) | \(N\) |
Tags: Beam Support