Four Span Continuous Beam - Equal Spans, Uniform Load on Three Spans
- See Article Link - Beam Design Formulas
- Tags: Beam Support
diagram Symbols
- Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
- Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.
Four Span Continuous Beam - Equal Spans, Uniform Load on Three Spans formulas |
||
\( R_1 \;=\; V_1 \;=\; 0.380\;w\;L \) \( R_2 \;=\; 1.223\;w\;L \) \( R_3 \;=\; 0.357\;w\;L \) \( R_4 \;=\; 0.598\;w\;L \) \( R_5 \;=\; V_5 \;=\; 0.442\;w\;L \) \( V_{2_1} \;=\; 0.620\;w\;L \) \( V_{2_2} \;=\; 0.603\;w\;L \) \(V_{3_1} \;=\; 0.397\;w\;L \) \( V_{3_2} \;=\; V_{4_1} \;=\; 0.040\;w\;L \) \( V_{4_2} \;=\; 0.558\;w\;L \) \( M_1 \; ( 0.380\;L \; from \; R_1 ) \;=\; 0.072\;w\;L^2 \) \( M_2 \; (at\; R_2 ) \;=\; -\; (0.1205\;w\;L^2) \) \(vM_3 \; ( 0.603\;L \; from \; R_2 ) \;=\; 0.611\;w\;L^2 \) \( M_4 \; (at\; R_3 ) \;=\; - \; (0.0179\;w\;L^2) \) \( M_5 \; (at\; R_4 ) \;=\; - \; (0.058\;w\;L^2) \) \( M_6 \; ( 0.442\;L \; from \; R_5 ) \;=\; 0.0977\;w\;L^2 \) \( \Delta_{max} \; ( at\; 0.475\;L \; from \; R_5 ) \;=\; (0.0094\;w\;L^4) \;/\; (\lambda\; I) \) |
||
Symbol | English | Metric |
\( \Delta \) = deflection or deformation | \(in\) | \(mm\) |
\( w \) = load per unit length | \(lbf\;/\;in\) | \(N\;/\;m\) |
\( M \) = maximum bending moment | \(lbf-in\) | \(N-mm\) |
\( V \) = maximum shear force | \(lbf\) | \(N\) |
\( \lambda \) (Greek symbol lambda) = modulus of elasticity | \(lbf\;/\;in^2\) | \(Pa\) |
\( R \) = reaction load at bearing point | \(lbf\) | \(N\) |
\( I \) = second moment of area (moment of inertia) | \(in^4\) | \(mm^4\) |
\( L \) = span length under consideration | \(in\) | \(mm\) |
Tags: Beam Support