Height

Written by Jerry Ratzlaff on . Posted in Geometry

height 1

 

Height formulas

\(\large{ h_l = \frac{ p_b \; - \; p_t }{ \rho \; g }  }\)     (Pascal's Law

\(\large{ h = \frac {PE} {m \;  g}  }\)     (Potential Energy)

Symbol English Metric
\(\large{ h }\) = height \(\large{ ft }\) \(\large{ m }\)
\(\large{ h_l }\) = height of depth of the liquid column \(\large{ ft }\) \(\large{ m }\)
\(\large{ \rho }\)   (Greek symbol rho) = density \(\large{\frac{lbm}{ft^3}}\)  \(\large{\frac{kg}{m^3}}\)
\(\large{ g }\) = gravitational acceleration  \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\)
\(\large{ m }\) = mass  \(\large{lbm}\) \(\large{kg}\)
\(\large{ PE }\) = potential energy  \(\large{ lbf-ft }\) \(\large{ J }\)
\(\large{ p_b }\) = pressure at bottom of column \(\large{\frac{lbf}{in^2}}\) \(\large{Pa}\)
\(\large{ p_t }\) = pressure at top of column  \(\large{\frac{lbf}{in^2}}\) \(\large{Pa}\)

 

Piping Designer Logo 1

Tags: Pressure Equations Gravity Equations Density Equations