Sector of a Circle
- Sector is a fraction of the area of a circle with a radius on each side and an arc.
- Angle (\(\Delta\)) - Two rays sharing a common point.
- Center (cp) - Having all points on the line circumference are at equal distance from the center point.
- Chord (c) - Also called long chord (LC), is between any two points on a circular curve.
- Circumference (C) - The outside of a circle or a complete circular arc.
- Height (h) - Length of radius from radius center to midpoint of chord.
- Height (h') - Length of radius from midpoint of chord to point on circular curve.
- Length (L) - Total length of any circular curve measured along the arc.
- Radius (r) - Half the diameter of a circle. A line segment between the center point and a point on a circle or sphere.
- Radius Point (rp) - Radius center point of circular curve.
- Segment is an interior part of a circle bound by a chord and an arc.
- Tangent (T) - A line that touches a curve at just one point such that it is perpendicular to a radius line of the curve.
- See Article Links - Geometric Properties of Structural Shapes
- Tags: Structural Steel Circle
Sector of a Circle Index
- Angle of a Sector
- Arc Length of a Sector
- Area of a Sector
- Distance from Centroid of a Sector
- Elastic Section Modulus of a Sector
- Perimeter of a Sector
- Polar Moment of Inertia of a Sector
- Radius of a Sector
- Radius of Gyration of a Sector
- Second Moment of Area of a Sector
Angle of a Sector formula |
||
\( \Delta \;=\; 2 \; A \;/\;r^2 \) | ||
Symbol | English | Metric |
\( \Delta \) = angle | \( deg \) | \(rad \) |
\( A \) = area of sector | \( in^2 \) | \(mm^2 \) |
\( r \) = radius | \( in \) | \( mm \) |
Arc Length of a Sector formula |
||
\( L \;=\; \Delta \; (\pi\;/\;180) \; r \) | ||
Symbol | English | Metric |
\( L \) = arc length | \( in \) | \(mm \) |
\( \Delta \) = angle | \( deg \) | \(rad \) |
\( \pi \) = Pi | \(3.141 592 653 ...\) | |
\( r \) = radius | \( in \) | \( mm \) |
area of a Sector formula |
||
\( A \;=\; \Delta \;r^2 \;/\;2 \) \( A \;=\; ( \Delta \;/\; 360 ) \; \pi \; r^2 \) \( A \;=\; ( \Delta \; \pi \;/\; 360 ) \; r^2 \) |
||
Symbol | English | Metric |
\( A \) = area of sector | \( in^2 \) | \(mm^2 \) |
\( \Delta \) = angle | \( deg \) | \(rad \) |
\( \pi \) = Pi | \(3.141 592 653 ...\) | |
\( r \) = radius | \( in \) | \( mm \) |
Distance from Centroid of a Sector formulas |
||
\( C_x \;=\; 2 \; r \; [\; sin(\Delta) \;/\;3\; \Delta \;] \) \( C_y \;=\; 0 \) |
||
Symbol | English | Metric |
\( C \) = distance from centroid | \( in \) | \( mm \) |
\( A \) = area of sector | \( in \) | \( mm \) |
\( \Delta \) = angle | \( deg \) | \(rad \) |
\( r \) = radius | \( in \) | \( mm \) |
Elastic Section Modulus of a Sector formula |
||
\( S \;=\; I_x \;/\; sin(\Delta) \; r \) | ||
Symbol | English | Metric |
\( S \) = elastic section modulus | \( in^3 \) | \( mm^3 \) |
\( \Delta \) = angle | \( deg \) | \(rad \) |
\( I \) = moment of inertia | \( in^4 \) | \( mm^4 \) |
\( r \) = radius | \( in \) | \( mm \) |
Perimeter of a Sector formula |
||
\( P \;=\; 2 \; r + 2 \; r \; \Delta \) | ||
Symbol | English | Metric |
\( P \) = perimeter | \( in \) | \( mm \) |
\( \Delta \) = angle | \( deg \) | \(rad \) |
\( r \) = radius | \( in \) | \( mm \) |
Polar Moment of Inertia of a Sector formulas |
||
\( J_{z} \;=\; (r^4\;/\;18) \; ( 9 \; \Delta^2 - 8 \; sin^2(\Delta) \;/\; \Delta ) \) \( J_{z1} \;=\; r^4 \; \Delta\;/\;2 \) |
||
Symbol | English | Metric |
\( J \) = torsional constant | \( in^4 \) | \( mm^4 \) |
\( \Delta \) = angle | \( deg \) | \(rad \) |
\( r \) = radius | \( in \) | \( mm \) |
Radius of a Sector formula |
||
\( r \;=\; \sqrt{ 2 \; A \;/\; \Delta } \) | ||
Symbol | English | Metric |
\( r \) = radius | \( in \) | \( mm \) |
\( A \) = area of sector | \( in^2 \) | \(mm^2 \) |
\( \Delta \) = angle | \( deg \) | \(rad \) |
Radius of Gyration of a Sector formulas |
||
\( k_{x} \;=\; \frac{1}{4} \; \sqrt{ 2 \; r^2 \; [\; 2\; \Delta - sin(2 \; \Delta ) \;/\; \Delta \;] } \) \( k_{y} \;=\; \frac{1}{12} \; \sqrt{ 2 \; r^2 \; [\; 180^2 + 9\; \Delta \; sin(2\; \Delta) - 32 + 32 \; cos^2(\Delta) \;/\; \Delta^2 \;] } \) \( k_{z} \;=\; \frac{1}{6} \; \sqrt{ 2 \; r^2 \; [\; 9 \; \Delta^2 - 8 \; sin^2(2\; \Delta ) \;/\; \Delta^2 \;] } \) \( k_{x1} \;=\; \frac{1}{4} \; \sqrt{ 2 \; r^2 \; [\; 2\; \Delta - sin(2 \; \Delta) \;/\; \Delta \;] } \) \( k_{y1} \;=\; \frac{1}{4} \; \sqrt{ 2 \; r^2 \; [\; 2\; \Delta + sin(2 \; \Delta ) \;/\; \Delta \;] } \) \( k_{x1} \;=\; r\;/\; \sqrt{2} \) |
||
Symbol | English | Metric |
\( k \) = radius of gyration | \( in \) | \( mm \) |
\( \Delta \) = angle | \( deg \) | \(rad \) |
\( r \) = radius | \( in \) | \( mm \) |
Second Moment of Area of a Sector formulas |
||
\( I_{x} \;=\; (r^4\;/\;4) \; [\; \Delta - \frac{1}{2} \; sin( 2 \; \Delta ) \;] \) \( I_{y} \;=\; (r^4\;/\;4) \; [\; \Delta + \frac{1}{2} \; sin( 2 \; \Delta) \;] - [\; (4\;r^4\;/\;9\; \Delta ) \; sin^2 ( \Delta ) \;] \) \( I_{x1} \;=\; I_x + r^4 \; \Delta \; sin^2 (\Delta) \) \( I_{y1} \;=\; (r^4\;/\;4) \; [\; \Delta + \frac{1}{2} \; sin( 2 \; \Delta ) \;] \) |
||
Symbol | English | Metric |
\( I \) = moment of inertia | \( in^4 \) | \( mm^4 \) |
\( \Delta \) = angle | \( deg \) | \(rad \) |
\( r \) = radius | \( in \) | \( mm \) |
Tags: Structural Steel Circle