3 Overlapping Circles
3 overlapping circles (a two-dimensional figure) with equal length arcs connecting at the vertices.
Area of 3 Overlapping Circles formulas
\(\large{ A_1 = \left(3 \; \pi \; r^2\right) - \left(3 \; A_3\right) + A_4 }\) | |
\(\large{ A_2 = \left(3 \; A_3\right) - \left(2 \; A_4\right) }\) | |
\(\large{ A_3 = \left[ \left(2 \; \frac{\pi}{3} \right) - \sqrt{ \frac{3}{4} }\;\; \right] \; r^2 }\) | |
\(\large{ A_4 = \left( \pi - \sqrt{3}\; \right) \; \frac{r^2}{2} }\) |
Where:
Units | English | SI |
\(\large{ A }\) = area | \(\large{ft^2}\) | \(\large{m^2}\) |
\(\large{ \pi }\) = Pi | \(\large{dimensionless}\) | |
\(\large{ r }\) = radius | \(\large{ft}\) | \(\large{m}\) |
Perimeter of 3 Overlapping Circles formulas
\(\large{ P_1 = 3 \; \pi \; r }\) | |
\(\large{ P_2 = 2 \; \pi \; r }\) | |
\(\large{ P_3 = \frac{4}{3} \; \pi \; r }\) | |
\(\large{ P_4 = \pi \; r }\) |
Where:
Units | English | SI |
\(\large{ P }\) = perimeter | \(\large{ft}\) | \(\large{m}\) |
\(\large{ \pi }\) = Pi | \(\large{dimensionless}\) | |
\(\large{ r }\) = radius | \(\large{ft}\) | \(\large{m}\) |