Sphere

on . Posted in Solid Geometry

  • Sphere (a three-dimensional figure) has all points equally spaces from a given point of a three dimensional solid.
  • Lune of a sphere is the space occupied by a wedge from the center of the sphere to the surface of the sphere.
  • Sector of a sphere is the space occupied by a portion of the sphere with the vertex at the center and conical boundary.
  • Segment and zone of a sphere is the space occupied by a portion of the sphere cut by two parallel planes.
  • Sperical cap is the space occupied by a portion of the sphere cut by a plane.

Sphere Index

 

sphere 3

Circumference of a Sphere formula

\( C = 2 \; \pi \; r \)
Symbol English Metric
\( C \) = circumference \( in \) \( mm \)
\( \pi \) = Pi \(3.141 592 653 ...\)
\( r \) = radius \( in \) \( mm \)
\( d \) = diameter \( in \) \( mm \)

 

sphere 3

Diameter of a Sphere formula

\( d = 2\;r \)
Symbol English Metric
\( d \) = diameter \( in \) \( mm \)
\( r \) = radius \( in \) \( mm \)

 

 

 

sphere 3

RADIUS of a sphere formula

\( r =  \sqrt{ S \;/\; 4 \; \pi }  \) 

\( r =  \sqrt{ ( 3 \;/\; 4 ) \; ( V \;/\; \pi )  }  \)

Symbol English Metric
\( r \) = radius \( in \) \( mm \)
\( \pi \) = Pi \(3.141 592 653 ...\)
\( S \) = surface area \( in^2 \) \( mm^2 \)
\( V \) = volume \( in^3 \) \( mm^3 \)

 

sphere 3

Surface Area of a sphere formula

\( S =  4\; \pi \;r^2  \) 
Symbol English Metric
\( S \) = surface area \( in^2 \) \( mm^2 \)
\( \pi \) = Pi \(3.141 592 653 ...\)
\( r \) = radius \( in \) \( mm \)

 

 

 

sphere 3

Volume of a sphere formula

\( V =  \frac{4}{3} \; \pi \;r^3  \) 

\( V =   \pi \; d^3 \;/\; 6 \) 

Symbol English Metric
\( V \) = volume \( in^3 \) \( mm^3 \)
\( \pi \) = Pi \(3.141 592 653 ...\)
\( r \) = radius \( in \) \( mm \)

 

sphere volume cap 1

Surface Area of a sphere Cap formula

\( S = 2 \; \pi \; r \; h  \) 
Symbol English Metric
\( S \) = surface area \( in^2 \) \( mm^2 \)
\( h \) = height \( in \) \( mm \)
\( \pi \) = Pi \(3.141 592 653 ...\)
\( r \) = radius \( in \) \( mm \)

 

 

sphere volume cap 1

VOLUME of a sphere Cap formula

\( V = \frac {1}{3} \; \pi\;h^2 \left( 3 r - h  \right)  \) 

\( V = \frac {1}{6} \; \pi\;h \left( 3 r_1{^2} + h^2  \right)  \)

Symbol English Metric
\( V \) = volume \( in^3 \) \( mm^3 \)
\( h \) = height \( in \) \( mm \)
\( \pi \) = Pi \(3.141 592 653 ...\)
\( r \) = radius \( in \) \( mm \)
\( r_1 \) = radius \( in \) \( mm \)

 

sphere diameter 1

Surface Area of a sphere Segment formula

\( S = 2 \; \pi \; r \; h  \) 
Symbol English Metric
\( S \) = surface area \( in^2 \) \( mm^2 \)
\( h \) = height \( in \) \( mm \)
\( \pi \) = Pi \(3.141 592 653 ...\)
\( r \) = radius \( in \) \( mm \)

 

 

sphere diameter 1

VOLUME of a sphere Segment formula

\( V = \frac {1}{6} \; \pi\;h \left( 3 r_1{^2} + 3 r_2{^2} + h^2  \right)  \) 
Symbol English Metric
\( V \) = volume \( in^3 \) \( mm^3 \)
\( h \) = height \( in \) \( mm \)
\( \pi \) = Pi \(3.141 592 653 ...\)
\( r \) = radius \( in \) \( mm \)
\( r_1 \) = radius \( in \) \( mm \)
\( r_2 \) = radius \( in \) \( mm \)

 

sphere volume wedge 1

Surface Area of a sphere WEDGE formula

\( S = \frac{ \theta }{ 360 } \; 4 \; \pi \; r^2 \) 
Symbol English Metric
\( S \) = surface area \( in^2 \) \( mm^2 \)
\( \theta \) = angle \( deg \) \( rad \)
\( \pi \) = Pi \(3.141 592 653 ...\)
\( r \) = radius \( in \) \( mm \)

 

 

sphere volume wedge 1

Volume of a sphere WEDGE formula

\( V = \frac{ \theta }{ 2 \; \pi } \; \frac{ 4 }{ 3 } \; \pi \; r^2 \) 
Symbol English Metric
\( V \) = volume \( in^3 \) \( mm^3 \)
\( \theta \) = angle \( deg \) \( rad \)
\( \pi \) = Pi \(3.141 592 653 ...\)
\( r \) = radius \( in \) \( mm \)

 

 

sphere volume sector 1

VOLUME of a sphere SECTOR formula

\( V = \frac {2}{3}\; \pi \; r^2\;h \) 
Symbol English Metric
\( V \) = volume \( in^3 \) \( mm^3 \)
\( h \) = height \( in \) \( mm \)
\( \pi \) = Pi \(3.141 592 653 ...\)
\( r \) = radius \( in \) \( mm \)
\( r_1 \) = radius \( in \) \( mm \)

 

Piping Designer Logo 1

 

 

 

Tags: Volume Area Segment Sector