Venturi Tube Flow Rate

Written by Jerry Ratzlaff on . Posted in Fluid Dynamics

Venturi Tube Flow Rate Formulas

\(\large{ Q = C_v \; A \sqrt {2 \; g \; h_l}  }\)   
\(\large{ Q = C_v \; A \sqrt {  \frac { 2 \; p_l} {\rho}  }  }\)  

Where:

 Units English Metric
\(\large{ Q }\) = volumetric flow rate / flow rate \(\large{\frac{ft^3}{sec}}\) \(\large{\frac{m^3}{s}}\)
\(\large{ A }\) = cross-section area \(\large{in^2}\) \(\large{mm^2}\)
\(\large{ \rho }\) (Greek symbol rho) = density \(\large{\frac{lbm}{ft^3}}\)   \(\large{\frac{kg}{m^3}}\)
\(\large{ C_v }\) = flow coefficient dimensionless
\(\large{ g }\) = gravitational acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\)
\(\large{ h_l }\) = head loss \(ft\) \(m\)
\(\large{ p_l }\) = pressure loss \(\large{\frac{lbf}{in^2}}\) \(\large{Pa}\)


P D Logo 1 

Tags: Flow Equations