# Water Pressure Loss through Piping

on . Posted in Fluid Dynamics

## Water Pressure Loss Through Piping formulas

$$\large{ p_l = \frac{ \mu \; l \; {v_w}^2 \; \rho \; SG }{ 24 \;d \; g } }$$

$$\large{ p_l = 4.53 \; l \; \frac{ \frac{ Q_w }{ C }^{1.852} }{ d^{4.857} } }$$

Symbol English Metric
$$\large{ p_l }$$ = water pressure loss $$\large{\frac{lbf}{in^2}}$$ $$\large{Pa}$$
$$\large{ \rho }$$  (Greek symbol rho) = density of water $$\large{\frac{lb}{ft^3}}$$ $$\large{\frac{kg}{m^3}}$$
$$\large{ \mu }$$  (Greek symbol mu) = friction coefficient of water $$\large{dimensionless}$$
$$\large{ g }$$ = gravitational acceleration  $$\large{\frac{ft}{sec^2}}$$   $$\large{\frac{m}{s^2}}$$
$$\large{ l }$$ = length of pipe $$\large{ft}$$ $$\large{m}$$
$$\large{ C }$$ = pipe coefficient $$\large{dimensionless}$$
$$\large{ d }$$ = pipe inside diameter $$\large{in}$$ $$\large{mm}$$
$$\large{ SG }$$ = specific gravity of water $$\large{dimensionless}$$
$$\large{ Q_w }$$ = water flow rate $$\large{\frac{ft^3}{sec}}$$ $$\large{\frac{m^3}{s}}$$
$$\large{ v_w }$$ = water velocity $$\large{\frac{ft}{sec}}$$ $$\large{\frac{m}{s}}$$ 