Water Pressure Loss through Piping

Written by Jerry Ratzlaff on . Posted in Fluid Dynamics

Water Pressure Loss Through Piping formulas

\(\large{ p_l = \frac{ \mu \;  l  \; {v_w}^2 \; \rho  \; SG    }{ 24 \;d \; g }  }\)   
\(\large{ p_l =  4.53 \; l \;  \frac{ \frac{ Q_w }{ C }^{1.852}   }{ d^{4.857} }  }\)   

Where:

 Units English Metric
\(\large{ p_l }\) = water pressure loss \(\large{\frac{lbf}{in^2}}\) \(\large{Pa}\)
\(\large{ \rho }\)  (Greek symbol rho) = density of water \(\large{\frac{lb}{ft^3}}\) \(\large{\frac{kg}{m^3}}\)
\(\large{ \mu }\)  (Greek symbol mu) = friction coefficient of water \(\large{dimensionless}\)
\(\large{ g }\) = gravitational acceleration  \(\large{\frac{ft}{sec^2}}\)   \(\large{\frac{m}{s^2}}\)   
\(\large{ l }\) = length of pipe \(\large{ft}\) \(\large{m}\)
\(\large{ C }\) = pipe coefficient \(\large{dimensionless}\)
\(\large{ d }\) = pipe inside diameter \(\large{in}\) \(\large{mm}\)
\(\large{ SG }\) = specific gravity of water \(\large{dimensionless}\)
\(\large{ Q_w }\) = water flow rate \(\large{\frac{ft^3}{sec}}\) \(\large{\frac{m^3}{s}}\)
\(\large{ v_w }\) = water velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)

 

P D Logo 1

Tags: Pressure Equations Pipe Sizing Equations Water Equations