Linear Thermal Expansion

Written by Jerry Ratzlaff on . Posted in Thermodynamics

expansion linear 1Linear thermal expansion, abbreviated as \(\Delta l\), also known as line thermal expansion, is a porportional change in the origional length and change in temperature due to the heating or cooling of an object.

 

Linear thermal expansion Formulas

\(\large{ \overrightarrow{\Delta l}  =   l_f  -  l_i  }\)    
\(\large{ \overrightarrow{\Delta l}  =  \overrightarrow{\alpha_l}\; l_i \; \Delta T }\)   

Where:

 Units English Metric
\(\large{ \overrightarrow{\Delta l} }\) = linear thermal expansion \(\large{ \frac{in}{in\;F} }\) \(\large{ \frac{mm}{mm\;C} }\)
\(\large{ l_f }\) = final length \(\large{ft}\) \(\large{m}\)
\(\large{ l_i }\) = initial length \(\large{ft}\) \(\large{m}\)
\(\large{ \overrightarrow{\alpha_l} }\)   (Greek symbol alpha) = linear thermal expansion coefficient \(\large{ \frac{in}{in\;F} }\) \(\large{ \frac{mm}{mm\;C} }\)
\(\large{ \Delta T }\) = temperature change \(\large{F}\) \(\large{C}\)

 

P D Logo 1 

Tags: Thermal Equations Length Equations Expansion Equations