Linear Thermal Restrained Expansion
Tags: Thermal Compression and Expansion
Linear Thermal Restrained Expansion Formula |
||
\(\large{ \Delta p = \lambda\; A_i \; \overrightarrow{\alpha_l} \; \Delta T }\) | ||
Symbol | English | Metric |
\(\large{ \Delta p }\) = pressure differential | \(\large{ \frac{ lbf }{ in^2 } }\) | \(\large{ Pa }\) |
\(\large{ \overrightarrow{\alpha_l} }\) (Greek symbol alpha) = linear thermal expansion coefficient | \(\large{ \frac{in}{in\;F} }\) | \(\large{ \frac{mm}{mm\;C} }\) |
\(\large{ A_i }\) = initial area of object | \(\large{ in^2 }\) | \(\large{ mm^2 }\) |
\(\large{ \lambda }\) (Greek symbol lambda) = modulus of elasticity | \(\large{ \frac{ lbf }{ in^2 } }\) | \(\large{ Pa }\) |
\(\large{ \Delta T }\) = temperature differential | \(\large{ F }\) | \(\large{ C }\) |
Linear Thermal Restrained Expansion Formula |
||
\(\large{ \sigma_c = - \frac{p}{A_i} }\) | ||
Symbol | English | Metric |
\(\large{ \sigma_c }\) (Greek symbol sigma) = compressive stress | \(\large{ \frac{ lbf }{ in^2 } }\) | \(\large{ Pa }\) |
\(\large{ A_i }\) = initial area of object | \(\large{ in^2 }\) | \(\large{ mm^2 }\) |
\(\large{ p }\) = pressure | \(\large{ \frac{ lbf }{ in^2 } }\) | \(\large{ Pa }\) |
Linear Thermal Restrained Expansion Formula |
||
\(\large{ \sigma_c = - \lambda\; A_i \; \overrightarrow{\alpha_l} \; \Delta T }\) | ||
Symbol | English | Metric |
\(\large{ \sigma_c }\) (Greek symbol sigma) = compressive stress | \(\large{ \frac{ lbf }{ in^2 } }\) | \(\large{ Pa }\) |
\(\large{ \overrightarrow{\alpha_l} }\) (Greek symbol alpha) = linear thermal expansion coefficient | \(\large{ \frac{in}{in\;F} }\) | \(\large{ \frac{mm}{mm\;C} }\) |
\(\large{ A_i }\) = initial area of object | \(\large{ in^2 }\) | \(\large{ mm^2 }\) |
\(\large{ \lambda }\) (Greek symbol lambda) = modulus of elasticity | \(\large{ \frac{ lbf }{ in^2 } }\) | \(\large{ Pa }\) |
\(\large{ \Delta T }\) = temperature differential | \(\large{ F }\) | \(\large{ C }\) |