Radius of Gyration of a Square Channel
Radius of Gyration of a Square Channel formulas |
||
\( k_{x} \;=\; \sqrt{ \dfrac{ w\cdot l^3 - h^3 \cdot \left( w - t \right) }{ 12 \cdot \left[ w\cdot l - h \cdot \left( w - t \right) \right] } } \) \( k_{y} \;=\; \sqrt{ \dfrac{ I_{y} }{ A } } \) \( k_{z} \;=\; \sqrt{ k_{x}{^2} + k_{y}{^2} } \) \( k_{x1} \;=\; \sqrt{ \dfrac{ I_{x1} }{ A } } \) \( k_{y1} \;=\; \sqrt{ \dfrac{ I_{y1} }{ A } } \) \( k_{z1} \;=\; \sqrt{ k_{x1}{^2} + k_{y1}{^2} } \) |
||
Symbol | English | Metric |
\( k \) = radius of gyration | \(\large{ in }\) | \(\large{ mm }\) |
\( A \) = area | \(\large{ in^2 }\) | \(\large{ mm^2 }\) |
\( h \) = height | \(\large{ in }\) | \(\large{ mm }\) |
\( l \) = height | \(\large{ in }\) | \(\large{ mm }\) |
\( I \) = moment of inertia | \(\large{ in^4 }\) | \(\large{ mm^4 }\) |
\( t \) = thickness | \(\large{ in }\) | \(\large{ mm }\) |
\( w \) = width | \(\large{ in }\) | \(\large{ mm }\) |