Radius of Gyration of a Square Channel
| Radius of Gyration of a Square Channel formulas | ||
| \( k_{x} \;=\; \sqrt{ \dfrac{ w\cdot l^3 - h^3 \cdot \left( w - t \right) }{ 12 \cdot \left[ w\cdot l - h \cdot \left( w - t \right) \right] } } \) \( k_{y} \;=\; \sqrt{ \dfrac{ I_{y} }{ A } } \) \( k_{z} \;=\; \sqrt{ k_{x}{^2} + k_{y}{^2} } \) \( k_{x1} \;=\; \sqrt{ \dfrac{ I_{x1} }{ A } } \) \( k_{y1} \;=\; \sqrt{ \dfrac{ I_{y1} }{ A } } \) \( k_{z1} \;=\; \sqrt{ k_{x1}{^2} + k_{y1}{^2} } \) | ||
| Symbol | English | Metric | 
| \( k \) = radius of gyration | \(\large{ in }\) | \(\large{ mm }\) | 
| \( A \) = area | \(\large{ in^2 }\) | \(\large{ mm^2 }\) | 
| \( h \) = height | \(\large{ in }\) | \(\large{ mm }\) | 
| \( l \) = height | \(\large{ in }\) | \(\large{ mm }\) | 
| \( I \) = moment of inertia | \(\large{ in^4 }\) | \(\large{ mm^4 }\) | 
| \( t \) = thickness | \(\large{ in }\) | \(\large{ mm }\) | 
| \( w \) = width | \(\large{ in }\) | \(\large{ mm }\) | 


