Reynolds Number for Liquid Formula |
||
Re \;=\; \dfrac{ 92.1\cdot SG \cdot Q }{ d \cdot \eta } (Reynolds Number) SG \;=\; \dfrac{ Re \cdot d \cdot \eta }{ 92.1\cdot Q } Q \;=\; \dfrac{ Re \cdot d \cdot \eta }{ 92.1\cdot SG } d \;=\; \dfrac{ 92.1\cdot SG \cdot Q }{ Re \cdot \eta } \eta \;=\; \dfrac{ 92.1\cdot SG \cdot Q }{ Re \cdot d } |
||
Symbol | English | Metric |
Re = Reynolds Number | dimensionless | dimensionless |
SG = Liquid Specific Gravity Relative to Water (water = 1) | dimensionless | dimensionless |
Q = Liquid Flow Rate | ft^3\;/\;sec | m^3\;/\;s |
d = Inside Diameter of Pipe | in | mm |
\eta (Greek symbol eta) = Liquid Viscosity | lbf - sec\;/\;ft^2 | Pa-s |
Reynolds Number is a dimensionless quantity used in fluid mechanics to predict the nature of fluid flow, whether it’s laminar, transitional, or turbulent. For a liquid flowing through a pipe or around an object, it’s defined as the ratio of inertial forces to viscous forces. The exact transition depends on pipe roughness or flow conditions.