Simple Beam - Load Increasing Uniformly to Center

on . Posted in Structural Engineering

diagram Symbols

  • Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
  • Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

sb 3D

Simple Beam - Load Increasing Uniformly to Center formulas

\( R = V_{max} \;=\; W\;/\;2 \)

\( V_x  \;  [ \; x < (L\;/\;2) \;]  \;=\; (W\;/\;2\;L^2)  \; ( L^2 - 4\;x^2 ) \)

\( M_{max}  \; (at \;center) \;=\; W \;L\;/\;6  \)

\( M_x \; [\;  x < (L\;/\;2) \;]   \;=\; W\;x  \; [\; (1/2) - (2\;x^2\;/\;3\;L^2) \;]  \)

\( \Delta_{max} \; (at \;center) \;=\; W \;L^3 \;/\; 60 \; \lambda \;I \)

\( \Delta_x \; [\;  x < (L\;/\;2) \;]  \;=\; (W\; x \;/\;480\; \lambda \;I \;L^2)  \; (  5\;L^2 - 4\;x^2 )^2   \)

Symbol English Metric
\( R \) = reaction load at bearing point \(lbf\) \(N\)
\( V \) = maximum shear force \(lbf\) \(N\)
\( M \) = maximum bending moment \(lbf-in\) \(N-mm\)
\( \Delta \) = deflection or deformation \(in\) \(mm\)
\( W \) = total load or \( w\;L\;/\;2 \) \(lbf\) \(N\)
\( w \) = highest load per unit length of UIL \(lbf\;/\;in\) \(N\;/\;m\)
\( L \) = span length of the bending member \(in\) \(mm\)
\( x \) = horizontal distance from reaction to point on beam \(in\) \(mm\)
\( \lambda  \)   (Greek symbol lambda) = modulus of elasticity \(lbf\;/\;in^2\) \(Pa\)
\( I \) = second moment of area (moment of inertia) \(in^4\) \(mm^4\)

 

Piping Designer Logo Slide 1

Tags: Beam Support