Simple Beam - Uniform Load Partially Distributed at One End
- See Article Link - Beam Design Formulas
- Tags: Beam Support
diagram Symbols
- Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
- Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.
Simple Beam - Uniform Load Partially Distributed at One End formulas |
||
\( R_1 \;=\; V_1 \;=\; (w \;a\;/\;2\;L) \; ( 2\;L - a ) \) \( R_2 \;=\; V_2 \;=\; ( w \;a^2 \;/\;2\;L )\) \( V_x \; ( x < a ) \;=\; R_1 - w\;x \) \( M_{max} \; ( at \; x \;=\; R_1\;/\;w ) \;=\; R_{1}{^2} \;/\; 2\;w \) \( M_x \; ( x < a ) \;=\; (R_1 \; x) - (w\;x^2\;/\;2) \) \( M_x \; ( x > a ) \;=\; R_2 \; ( L - x ) \) \( \Delta_x \; ( x < a ) \;=\; ( w\; x \;/\; 24\; \lambda \;I \;L) \; [\; [\; a^2 \; ( 2\;L - a )^2\;] - [\; 2\;a\;x^2 \; ( 2\;L - a )\;] + L\;x^3 \;] \) \( \Delta_x \; ( x > a ) \;=\; [\; w\; a^2 \; ( L - x ) \;/\; 24\; \lambda \;I \;L \;] \; ( 4\;x\;L - 2\;x^2 - a^2 ) \) |
||
Symbol | English | Metric |
\( R \) = reaction load at bearing point | \(lbf\) | \(N\) |
\( V \) = maximum shear force | \(lbf\) | \(N\) |
\( M \) = maximum bending moment | \(lbf - in\) | \(N - mm\) |
\( \Delta \) = deflection or deformation | \(in\) | \(mm\) |
\( w \) = load per unit length | \(lbf\;/\;in\) | \(N\;/\;m\) |
\( a \) = width of UDL | \(in\) | \(mm\) |
\( L \) = span length of the bending member | \(in\) | \(mm\) |
\( x \) = horizontal distance from reaction to point on beam | \(in\) | \(mm\) |
\( \lambda \) (Greek symbol lambda) = modulus of elasticity | \(lbf\;/\;in^2\) | \(Pa\) |
\( I \) = second moment of area (moment of inertia) | \(in^4\) | \(mm^4\) |
Tags: Beam Support