Skip to main content

Overhanging Beam - Uniformly Distributed Load Over Supported Span

Diagram Symbols

Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

ob 3A

Overhanging Beam - Uniformly Distributed Load Over Supported Span formulas

\( R \;=\; V \;=\;  \dfrac{ w\cdot L }{ 2 }\) 

\( V_x \;=\;   w \cdot \left(  \dfrac{ L }{ 2 } - x \right)  \) 

\( M_{max} \; (at \;center )  \;=\;  \dfrac{ w\cdot L^2 }{ 8 }\) 

\( M_x \;=\;    \dfrac{ w\cdot x }{ 2} \cdot ( L - x )  \)

\( \Delta_{max} \; \left(at \;center \right)  \;=\;  \dfrac{ 5\cdot w\cdot L^4 }{ 384\cdot \lambda \cdot I }\)

\( \Delta_x   \;=\;   \dfrac{ w\cdot x }{ 24\cdot \lambda\cdot I }  \cdot ( L^3 - 2\cdot L\cdot x^2 + x^3 )  \)

\( \Delta_{x_1}   \;=\;    \dfrac{ - w \cdot L^3 \cdot x_1 }{ 24\cdot \lambda\cdot I  } \)

Symbol English Metric
\( \Delta \) = deflection or deformation \(in\) \(mm\)
\( x \) = horizontal distance from reaction to point on beam \(in\) \(mm\)
\( w \) = load per unit length \(lbf\;/\;in\) \(N\;/\;mm\)
\( M \) = maximum bending moment \(lbf-in\) \(N-mm\)
\( V \) = maximum shear force \(lbf\) \(N\)
\( \lambda  \)   (Greek symbol lambda) = modulus of elasticity \(lbf\;/\;in^2\) \(Pa\)
\( R \) = reaction load at bearing point \(lbf\) \(N\)
\( I \) = second moment of area (moment of inertia) \(in^4\) \(mm^4\)
\( L \) = span length of the bending member \(in\) \(mm\)

 

Piping Designer Logo Slide 1