Overhanging Beam - Uniformly Distributed Load on Overhang

on . Posted in Structural Engineering

diagram Symbols

  • Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
  • Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

ob 2A

Overhanging Beam - Uniformly Distributed Load on Overhang formulas

\( R_1 \;=\; V_2 \;=\;  w\; a^2 \;/\;2\;L \) 

\( R_2 \;=\; V_1 + V_2 \;=\; (w\; a \;/\;2\;L) \;  ( 2\;L + a)  \) 

\( V_2 \;=\; w \;a  \) 

\( V_{x _1} \;=\;   w \;  ( a - x_1 )  \)

\( M_{max} \; ( at\; R_2 )  \;=\;  w \;a^2 \;/\;2 \)

\( M_x \; (between\; supports )  \;=\;  w \;a^2 \;x \;/\;2\;L \)

\( M_{x_1} \; (for \;overhang )  \;=\; ( w \;/\;2) \; ( a - x_1)^2  \)

\( \Delta_x \; (between\; supports ) \;=\; ( - \;w \;a^2\; x \;/\;12\; \lambda\; I \;L) \; ( L^2 - x^2 )  \)

\( \Delta_{max} \; (between\; supports \;at\; x = \frac{L}{\sqrt{3}} )  \;=\; \frac{ - \;w\; a^2 \;L^2 }{18 \; \sqrt{3} \; \lambda\; I } \;=\; 0.03208 \;  ( w \;a^2 \; L^2 \;/\; \lambda\; I)  \)

\( \Delta_{max} \; (for \;overhang \;at\; x_1 = a )  \;=\; ( w\; x^3 \;/\;24\; \lambda\; I )  \; (  4\;L + 3\;a )   \)

\( \Delta_{x1} \; (for \;overhang ) \;=\; ( w\; x_1 \;/\;24\; \lambda\; I ) \;  ( 4\;a^2 \;L + 6\;a^2\; x_1 - 4\;a \;x_{1}{^2} + x_{1}{^3} )   \)

Symbol English Metric
\( \Delta \) = deflection or deformation \(in\) \(mm\)
\( x \) = horizontal distance from reaction to point on beam \(in\) \(mm\)
\( w \) = load per unit length \(lbf\;/\;in\) \(N\;/\;m\)
\( M \) = maximum bending moment \(lbf-in\) \(N-mm\)
\( V \) = maximum shear force \(lbf\) \(N\)
\( \lambda \)   (Greek symbol lambda) = modulus of elasticity \(lbf\;/\;in^2\) \(Pa\)
\( R \) = reaction load at bearing point \(lbf\) \(N\)
\( I \) = second moment of area (moment of inertia) \(in^4\) \(mm^4\)
\( L \) = span length of the bending member \(in\) \(mm\)

 

Piping Designer Logo Slide 1

 

 

Tags: Beam Support