Three Span Continuous Beam - Equal Spans, Uniformly Distributed Load
- See Article Link - Beam Design Formulas
- Tags: Beam Support
diagram Symbols
- Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
- Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.
Three Span Continuous Beam - Equal Spans, Uniformly Distributed Load formulas |
||
\( R_1 \;=\; V_1 \;=\; R_4 \;=\; V_4 \;=\; 0.400\;w\;L \) \( R_2 \;=\; R_3 \;=\; 1.100\;w\;L \) \( V_{2_1} \;=\; V_{3_2} \;=\; 0.500\;w\;L \) \( V_{2_2} \;=\; V_{3_1} \;=\; 0.600\;w\;L \) \( M_1 \;=\; M_5 \; (at\; 0.400\;L \; from \; R_1 \;or\; R_4 ) \;=\; 0.080\;w\;L^2 \) \( M_2 \;=\; M_4 \; (at\; R_2 \;or\; R_3 ) \;=\; 0.100\;w\;L^2 \) \( M_3 \; (at \;mid \;center \;span ) \;=\; 0.025\;w\;L^2 \) \( \Delta_{max} \; (at\; 0.446\;L \; from \; R_1 \;or\; R_4 ) \;=\; (0.0069\;w\;L^4) \;/\; (\lambda\; I) \) |
||
3 S C B - E S, Unif Dist Load - Solve for R1\(\large{ R_1 = 0.400 \; w \; L }\)
3 S C B - E S, Unif Dist Load - Solve for R2\(\large{ R_2 = 1.100\;w\;L }\)
3 S C B - E S, Unif Dist Load - Solve for V21\(\large{ V_{2_1} = 0.500\;w\;L }\)
3 S C B - E S, Unif Dist Load - Solve for V22\(\large{ V_{2_2} = 0.600\;w\;L }\)
3 S C B - E S, Unif Dist Load - Solve for M1\(\large{ M_1 = 0.080\;w\;L^2 }\)
3 S C B - E S, Unif Dist Load - Solve for M2\(\large{ M_2 = 0.100\;w\;L^2 }\)
3 S C B - E S, Unif Dist Load - Solve for M3\(\large{ M_3 = 0.025\;w\;L^2 }\)
3 S C B - E S, Unif Dist Load - Solve for Δmax\(\large{ \Delta_{max} = \frac{0.0069\;w\;L^4}{\lambda\; I} }\)
|
||
Symbol | English | Metric |
\( R \) = reaction load at bearing point | \(lbf\) | \(N\) |
\( V \) = maximum shear force | \(lbf\) | \(N\) |
\( M \) = maximum bending moment | \(lbf-ft\) | \(N-m\) |
\( \Delta \) = deflection or deformation | \(in\) | \(mm\) |
\( w \) = load per unit length | \(lbf\;/\;in\) | \(N\;/\;m\) |
\( L \) = span length under consideration | \(in\) | \(mm\) |
\( \lambda \) (Greek symbol lambda) = modulus of elasticity | \(lbf\;/\;in^2\) | \(Pa\) |
\( I \) = second moment of area (moment of inertia) | \(in^4\) | \(mm^4\) |
Tags: Beam Support