Three Span Continuous Beam - Equal Spans, Uniform Load on Two Spans to One Side

on . Posted in Structural Engineering

cb4s 2A

diagram Symbols

  • Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
  • Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

 

Three Span Continuous Beam - Equal Spans, Uniform Load on Two Spans to One Side formulas

\( R_1 \;=\; V_1  \;=\; 0.383\;w\;L    \) 

\( R_2   \;=\; 1.200\;w\;L    \) 

\( R_3   \;=\; 0.450\;w\;L    \) 

\( R_4   \;=\;   -\;(0.033\;w\;L)    \)

\( V_{2_1}    \;=\; 0.583\;w\;L    \)

\( V_{2_2}   \;=\; 0.617\;w\;L    \)

\( V_{3_1} \;=\; V_4   \;=\; 0.033\;w\;L    \)

\( V_{3_2}  \;=\; 0.417\;w\;L    \)

\( M_1  \; ( at\; x = 0.383\;L  \; from\; R_1 )   \;=\; 0.0735\;w\;L^2    \)

\( M_2  \;  ( at\; x = 0.538\;L  \; from \; R_2 )   \;=\; 0.0534\;w\;L^2    \)

\( M_3  \; (at\; R_3 )   \;=\; - \;(0.0333\;w\;L^2)    \)

\( \Delta_{max}  \; (at\;  0.430\;L  \;  from \; R_1 )   \;=\; (0.0059\;w\;L^4) \;/\; (\lambda\; I)    \)

Symbol English Metric
\( FB \) = free body \(lbf\) \(N\)
\( SF \) = shear force \(lbf\;/\;in^2\) \(Pa\)
\( BM \) = bending moment \(lbf\;/\;sec\) \(kg-m\;/\;s\)
\( UDL \) = uniformly distributed load \(lbf\) \(N\)
\( \Delta \) = deflection or deformation \(in\) \(mm\)
\( w \) = load per unit length \(lbf\;/\;in\) \(N\;/\;m\)
\( M \) = maximum bending moment \(lbf-ft\) \(N-m\)
\( V \) = maximum shear force \(lbf\) \(N\)
\( \lambda  \)   (Greek symbol lambda) = modulus of elasticity \(lbf\;/\;in^2\) \(Pa\)
\( I \) = second moment of area (moment of inertia) \(in^4\) \(mm^4\)
\( R \) = reaction load at bearing point \(lbf\) \(N\)
\( L \) = span length under consideration \(in\) \(mm\)

 

Piping Designer Logo 1

Tags: Beam Support