Four Span Continuous Beam - Equal Spans, Uniformly Distributed Load

on . Posted in Structural Engineering

cb5s 1A

diagram Symbols

  • Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
  • Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

Four Span Continuous Beam - Equal Spans, Uniformly Distributed Load formulas

\( R_1 \;=\; V_1 \;=\; R_5 \;=\; V_5  \;=\; 0.393\;w\;L    \) 

\( R_2 = R_4   \;=\; 1.143\;w\;L    \) 

\( R_3  \;=\; 0.928\;w\;L    \) 

\( V_{2_1} \;=\; V_{4_2}    \;=\; 0.607\;w\;L    \)

\( V_{2_2} \;=\; V_{4_1}    \;=\; 0.536\;w\;L    \)

\( V_{3_1} \;=\; V_{3_2}    \;=\; 0.464\;w\;L    \)

\( M_1  \; (at\; 0.393\;L \; from \;  R_1 ) = M_7 \; \left(at\; 0.393\;L  \; from \; R_5 \right)   \;=\; 0.0772\;w\;L^2    \)

\( M_2 \; (at\; R_2 )   \;=\; -\; (0.1071\;w\;L^2)    \)

\( M_3  \; (at\; 0.536\;L \; from \;  R_2 ) = M_5 \; \left(at\; 0.536\;L  \; from \; R_4 \right)   \;=\; 0.0364\;w\;L^2    \)

\( M_4 \; (at\; R_3 )   \;=\; -\; (0.0714\;w\;L^2)    \)

\( \Delta_{max} \; (at\; 0.440\;L \; from \; R_1 \;  and \; R_5 )  \;=\; (0.0065\;w\;L^4) \;/\; (\lambda\; I)    \)

Symbol English Metric
\( \Delta \) = deflection or deformation \(in\) \(mm\)
\( w \) = load per unit length \(lbf\;/\;in\) \(N\;/\;m\)
\( M \) = maximum bending moment \(lbf-in\) \(N-mm\)
\( V \) = maximum shear force \(lbf\) \(N\)
\( \lambda  \)   (Greek symbol lambda) = modulus of elasticity \(lbf\;/\;in^2\) \(Pa\)
\( R \) = reaction load at bearing point \(lbf\) \(N\)
\( I \) = second moment of area (moment of inertia) \(in^4\) \(mm^4\)
\( L \) = span length under consideration \(in\) \(mm\)

 

Piping Designer Logo Slide 1

Tags: Beam Support