Cantilever Beam - Uniformly Distributed Load
- See Article - Beam Design Formulas
Diagram Symbols
Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.
Cantilever Beam - Uniformly Distributed Load formulas |
||
\( R \;=\; V \;=\; w \cdot L \) \( V_x \;=\; w \cdot x \) \( M_{max} \; \left(at\; fixed \;end \right) \;=\; \dfrac{ w\cdot L^2 }{ 2 } \) \( M_x \;=\; \dfrac{ w\cdot x^2 }{ 2 } \) \( \Delta_{max} \; (at\; free\; end ) \;=\; \dfrac{ w\cdot L^4 }{ 8 \cdot \lambda\cdot I } \) \( \Delta_x \;=\; \dfrac{ w }{ 48\cdot \lambda\cdot I } \cdot ( x^4 - 4\cdot L^3\cdot x - 3\cdot x^4 ) \) |
||
Symbol | English | Metric |
\( R \) = reaction load at bearing point | \(lbf\) | \(N\) |
\( V \) = maximum shear force | \(lbf\) | \(N\) |
\( M \) = maximum bending moment | \(lbf-in\) | \(N-mm\) |
\( \Delta \) = deflection or deformation | \(in\) | \(mm\) |
\( w \) = load per unit length | \(lbf\;/\;in\) | \(N\;/\;m\) |
\( L \) = span length of the bending member | \(in\) | \(mm\) |
\( x \) = horizontal distance from reaction to point on beam | \(in\) | \(mm\) |
\( \lambda \) (Greek symbol lambda) = modulus of elasticity | \(lbf\;/\;in^2\) | \(Pa\) |
\( I \) = second moment of area (moment of inertia) | \(in^4\) | \(mm^4\) |
Similar Articles
- Beam Fixed at Both Ends - Uniformly Distributed Load
- Three Span Continuous Beam - Equal Spans, Uniform Load on Two Spans to One Side
- Two Span Continuous Beam - Equal Spans, Concentrated Load at Any Point
- Overhanging Beam - Uniformly Distributed Load
- Simple Beam - Load Increasing Uniformly to One End