Cantilever Beam - Uniformly Distributed Load
- See Article Link - Beam Design Formulas
- Tags: Beam Support
diagram Symbols
- Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
- Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.
Cantilever Beam - Uniformly Distributed Load formulas |
||
\( R \;=\; V \;=\; w \; L \) \( V_x \;=\; w \; x \) \( M_{max} \; \left(at\; fixed \;end \right) \;=\; w\; L^2\;/\;2 \) \( M_x \;=\; w\;x^2 \;/\;2 \) \( \Delta_{max} \; (at\; free\; end ) \;=\; w\; L^4\;/\;8 \;\lambda\; I \) \( \Delta_x \;=\; (w\;/\;48\; \lambda\; I) \; ( x^4 - 4\;L^3\;x - 3\;x^4 ) \) |
||
C B - Uniformly Distributed Load - Solve for R\(\large{ R = V = w \; L }\)
C B - Uniformly Distributed Load - Solve for Vx\(\large{ V_x = w \; x }\)
C B - Uniformly Distributed Load - Solve for Mmax\(\large{ M_{max} \; \left(at\; fixed \;end \right) = \frac{w\; L^2}{2} }\)
C B - Uniformly Distributed Load - Solve for Mx\(\large{ M_x = \frac{ w \; x^2 }{2} }\)
C B - Uniformly Distributed Load - Solve for Δmax\(\large{ \Delta_{max} \; \left(at\; free\; end \right) = \frac{w\; L^4}{8 \;\lambda\; I} }\)
C B - Uniformly Distributed Load - Solve for Δx\(\large{ \Delta_x = \frac{w}{48\; \lambda\; I} \; \left( x^4 - 4\;L^3\;x - 3\;x^4 \right) }\)
|
||
Symbol | English | Metric |
\( R \) = reaction load at bearing point | \(lbf\) | \(N\) |
\( V \) = maximum shear force | \(lbf\) | \(N\) |
\( M \) = maximum bending moment | \(lbf-in\) | \(N-mm\) |
\( \Delta \) = deflection or deformation | \(in\) | \(mm\) |
\( w \) = load per unit length | \(lbf\;/\;in\) | \(N\;/\;m\) |
\( L \) = span length of the bending member | \(in\) | \(mm\) |
\( x \) = horizontal distance from reaction to point on beam | \(in\) | \(mm\) |
\( \lambda \) (Greek symbol lambda) = modulus of elasticity | \(lbf\;/\;in^2\) | \(Pa\) |
\( I \) = second moment of area (moment of inertia) | \(in^4\) | \(mm^4\) |
Tags: Beam Support