Cantilever Beam - Load Increasing Uniformly to One End
- See Article Link - Beam Design Formulas
- Tags: Beam Support
diagram Symbols
- Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
- Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.
Cantilever Beam - Load Increasing Uniformly to One End formulas |
||
\( R \;=\; V \;=\; W \) \( V_x \;=\; W\; (x^2\;/\;L^2 ) \) \( M_{max} \; \left(at\; fixed \;end \right) \;=\; W\; L\;/\;3 \) \( M_x \;=\; W\;x^3 \;/\;3\;L^2 \) \( \Delta_{max} \; \left(at\; free\; end \right) \;=\; W\; L^3\;/\;15\; \lambda\; I \) \( \Delta_x \;=\; (W\;x^2\;/\;60\; \lambda \;I \;L^2) \; ( x^5 + 5\;L^4 x + 4\;L^5) \) |
||
C B - Load Increasing Unif to One End - Solve for R\(\large{R = \frac{w\;L}{2} }\)
C B - Load Increasing Unif to One End - Solve for Vx\(\large{ V_x = \frac{w\;L}{2} \; \frac{x^2}{L^2} }\)
C B - Load Increasing Unif to One End - Solve for Mmax\(\large{ M_{max} = \frac{\frac{w\;L}{2} \; L}{3} }\)
C B - Load Increasing Unif to One End - Solve for Mx\(\large{ M_x = \frac{ \frac{w\;L}{2} \;x^3 }{3\;L^2} }\)
C B - Load Increasing Unif to One End - Solve for Δmax\(\large{ \Delta_{max} = \frac{\frac{w\;L}{2} \; L^3}{15\; \lambda\; I} }\)
C B - Load Increasing Unif to One End - Solve for Δx\(\large{ \Delta_x = \frac{\frac{w\;L}{2} \;x^2}{60\; \lambda \;I \;L^2} \; \left( x^5 + 5\;L^4 x + 4\;L^5 \right) }\)
|
||
Symbol | English | Metric |
\( R \) = reaction load at bearing point | \(lbf\) | \(N\) |
\( V \) = maximum shear force | \(lbf\) | \(N\) |
\( M \) = maximum bending moment | \(lbf-in\) | \(N-mm\) |
\( \Delta \) = deflection or deformation | \(in\) | \(mm\) |
\( W \) = total load \((w\;L\;/\;2) \) | \(lbf\) | \(N\) |
\( w \) = highest load per unit length | \(lbf\;/\;in\) | \(N\;/\;m\) |
\( L \) = span length of the bending member | \(in\) | \(mm\) |
\( x \) = horizontal distance from reaction to point on beam | \(in\) | \(mm\) |
\( \lambda \) (Greek symbol lambda) = modulus of elasticity | \(lbf\;/\;in^2\) | \(Pa\) |
\( I \) = second moment of area (moment of inertia) | \(in^4\) | \(mm^4\) |
Tags: Beam Support