Two Span Continuous Beam - Equal Spans, Uniformly Distributed Load
- See Article Link - Beam Design Formulas
diagram Symbols
- Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
- Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.
Two Span Continuous Beam - Equal Spans, Uniformly Distributed Load formulas |
||
\( R_1 \;=\; V_1 \;=\; R_3 \;=\; V_4 \;=\; 3\;w \;L\;/\;8 \) \( R_2 \;=\; 10\;w\;L\;/\;8 \) \( V_2 = V_{max} \;=\; 5\;w\;L\;/\;8 \) \( M_1 \;=\; w\;L^2\;/\;8 \) \( M_2 \; (at\; \frac{3\;L}{8} ) \;=\; 9\;w\;L^2\;/\;128 \) \( \Delta_{max} \; ( 0.4215 \;L \;from\; R_1 \;\And\; R_3 ) \;=\; w\;L^4\;/\;185\; \lambda\; I \) |
||
2 S C B - E S, Unif Dist Load - Solve for R1\(\large{ R_1 = \frac{3\;w \;L}{8} }\)
2 S C B - E S, Unif Dist Load - Solve for R2\(\large{ R_2 = \frac{10\;w\;L}{8} }\)
2 S C B - E S, Unif Dist Load - Solve for V2\(\large{ V_2 = \frac{5\;w\;L}{8} }\)
2 S C B - E S, Unif Dist Load - Solve for M1\(\large{ M_1 = \frac{w\;L^2}{8} }\)
2 S C B - E S, Unif Dist Load - Solve for M2\(\large{ M_2 = \frac{9\;w\;L^2}{128} }\)
2 S C B - E S, Unif Dist Load - Solve for Δmax\(\large{ \Delta_{max} = \frac{w\;L^4}{185\; \lambda\; I} }\)
|
||
Symbol | English | Metric |
\( R \) = reaction load at bearing point | \(lbf\) | \(N\) |
\( V \) = maximum shear force | \(lbf\) | \(N\) |
\( M \) = maximum bending moment | \(lbf-ft\) | \(N-m\) |
\( \Delta \) = deflection or deformation | \(in\) | \(mm\) |
\( w \) = load per unit length | \(lbf\;/\;in\) | \(N\;/\;m\) |
\( L \) = span length under consideration | \(in\) | \(mm\) |
\( \lambda \) (Greek symbol lambda) = modulus of elasticity | \(lbf\;/\;in^2\) | \(Pa\) |
\( I \) = second moment of area (moment of inertia) | \(in^4\) | \(mm^4\) |
Tags: Beam Support