Two Span Continuous Beam - Equal Spans, Uniform Load on One Span

on . Posted in Structural Engineering

cb3s 2A

Article Links

 

 

 

 

 

 

 

 

 

 

 

 

Two Span Continuous Beam - Equal Spans, Uniform Load on One Span formulas

\(\large{ R_1 = V_1   \;\;=\;\; \frac{7\;w\;L}{16}    }\) 

\(\large{ R_2 = V_2 + V_3   \;\;=\;\; \frac{5\;w\;L}{8}    }\) 

\(\large{ R_3 = V_3   \;\;=\;\; \frac{w\;L}{16}    }\) 

\(\large{ V_2   \;\;=\;\; \frac{9\;w\;L}{16}    }\)

\(\large{ M_{max} \; \left(at\; x = \frac{7\;L}{16} \right)    \;\;=\;\; \frac{49\;w\;L^2}{512}    }\)

\(\large{ M_1 \; \left(at \;support\; R_2 \right)  \;\;=\;\; \frac{w\;L^2}{16}    }\)

\(\large{ M_x \;  \left( x < L \right)  \;\;=\;\; \frac{w\;x}{16} \; \left( 7\;L - 8\;x \right)  }\)

\(\large{ \Delta_{max} \; \left( 0.472 \; L \; from\;R_1 \right)  \;\;=\;\; 0.0092 \; \frac{w\;L^4}{ \lambda\; I}    }\)

Symbol English Metric
\(\large{ \Delta }\) = deflection or deformation \(\large{in}\) \(\large{mm}\)
\(\large{ x }\) = horizontal distance from reaction to point on beam \(\large{in}\) \(\large{mm}\)
\(\large{ w }\) = load per unit length \(\large{\frac{lbf}{in}}\) \(\large{\frac{N}{m}}\)
\(\large{ M }\) = maximum bending moment \(\large{lbf-in}\) \(\large{N-mm}\)
\(\large{ V }\) = maximum shear force \(\large{lbf}\) \(\large{N}\)
\(\large{ \lambda  }\)   (Greek symbol lambda) = modulus of elasticity \(\large{\frac{lbf}{in^2}}\) \(\large{Pa}\)
\(\large{ I }\) = second moment of area (moment of inertia) \(\large{in^4}\) \(\large{mm^4}\)
\(\large{ R }\) = reaction load at bearing point \(\large{lbf}\) \(\large{N}\)
\(\large{ L }\) = span length under consideration \(\large{in}\) \(\large{mm}\)

 

diagrams

  • Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
  • Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

Piping Designer Logo 1

Tags: Beam Support Equations