Two Member Frame - Fixed/Pin Side Point Load
Article Links |
Two Member Frame - Fixed/Pin Side Point Load formulas
\(\large{ e \;\;=\;\; \frac{h}{L} }\) | |
\(\large{ \beta \;\;=\;\; \frac{I_h}{I_v} }\) | |
\(\large{ R_A = R_D \;\;=\;\; \frac{3\;P\;y \; \left( h\;-\;y^2 \right) }{h\;L^2} \; \left( \frac{ \beta }{ 3\;\beta\;e \;+\; 4} \right) }\) | |
\(\large{ H_A \;\;=\;\; \frac{P\;y}{h} \; \left[ 1+ \; \frac{h\;-\;y}{h^2} \; \left( \frac{ 3\;a\;\beta\;e \;+\; 2\; \left( h\;+\;y \right) }{ 3\;\beta\;e \;+\; 4} \right) \right] }\) | |
\(\large{ H_D \;\;=\;\; P - H_A }\) | |
\(\large{ M_A \;\;=\;\; \frac{P\;x \; \left( h\;-\;y \right) }{h^2} \; \left( \frac{ 3\;a\;\beta\;e \;+\; 2\; \left( h\;+\;y \right) }{ 3\;\beta\;e \;+\; 4} \right) }\) | |
\(\large{ M_B \;\;=\;\; H_A \; \left( h\;-\;y \right) - M_A }\) | |
\(\large{ M_C \;\;=\;\; \frac{3\;P\;y \; \left( h\;-\;y \right)^2 }{h\;L} \; \left( \frac{ \beta }{ 3\;\beta\;e \;+\; 4} \right) }\) |
Where:
Units | English | Metric |
\(\large{ \Delta }\) = deflection or deformation | \(\large{in}\) | \(\large{mm}\) |
\(\large{ h }\) = height of frame | \(\large{in}\) | \(\large{mm}\) |
\(\large{ H }\) = horizontal reaction load at bearing point | \(\large{lbf}\) | \(\large{N}\) |
\(\large{ I_h }\) = horizontal member second moment of area (moment of inertia) | \(\large{in^4}\) | \(\large{mm^4}\) |
\(\large{ I_v }\) = vertical member second moment of area (moment of inertia) | \(\large{in^4}\) | \(\large{mm^4}\) |
\(\large{ M }\) = maximum bending moment | \(\large{lbf-in}\) | \(\large{N-mm}\) |
\(\large{ A, B, C, D }\) = point of intrest on frame | - | - |
\(\large{ L }\) = span length under consideration | \(\large{in}\) | \(\large{mm}\) |
\(\large{ P }\) = total concentrated load | \(\large{lbf}\) | \(\large{N}\) |
\(\large{ y }\) = vertical distance from reaction to point on beam | \(\large{in}\) | \(\large{mm}\) |
\(\large{ R }\) = vertical reaction load at bearing point | \(\large{lbf}\) | \(\large{N}\) |
diagrams
- Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
- Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.
Tags: Frame Support