Two Member Frame - Fixed/Pin Top Uniformly Distributed Load

on . Posted in Structural Engineering

2ffp 3A

Article Links

 

 

 

 

 

 

 

 

Two Member Frame - Fixed/Pin Top Uniformly Distributed Load formulas

Important Value

 
\(\large{ e  \;\;=\;\; \frac{h}{L}  }\)   
\(\large{ \beta \;\;=\;\; \frac{I_h}{I_v}  }\)   

Support reaction

 
\(\large{ R_A  \;\;=\;\;  \frac{w\;L}{2}   \;   \left(  \frac{ 3\;\beta\;e \;+\; 5 }{3\; \beta\;e \;+\; 4 } \right) }\)  
\(\large{ R_C  \;\;=\;\;  \frac{3\;w\;L}{2}   \;   \left(  \frac{ \beta\;e \;+\; 1 }{3\; \beta\;e \;+\; 4 } \right) }\)  
\(\large{ H_A =  H_C  \;\;=\;\;   \frac{3\; w\;L^2 }{ 4\;h\; \left(3\; \beta\;e \;+\; 4 \right)  }   }\)  

Bending Moment

 
\(\large{ M_A \;\;=\;\;  \frac{ w\;L^2 }{ 4\; \left(3\; \beta\;e \;+\; 4 \right)  }   }\)  
\(\large{ M_B \;\;=\;\;  \frac{ w\;L^2 }{ 2\; \left( 3\;\beta\;e \;+\; 4 \right)  }   }\)  

Where:

 Units English Metric
\(\large{ \Delta }\) = deflection or deformation \(\large{in}\) \(\large{mm}\)
\(\large{ h }\) = height of frame \(\large{in}\) \(\large{mm}\)
\(\large{ H }\) = horizontal reaction load at bearing point \(\large{lbf}\) \(\large{N}\)
\(\large{ I_h }\) = horizontal member second moment of area (moment of inertia) \(\large{in^4}\) \(\large{mm^4}\)
\(\large{ I_v }\) = vertical member second moment of area (moment of inertia) \(\large{in^4}\) \(\large{mm^4}\)
\(\large{ w }\) = load per unit length \(\large{\frac{lbf}{in}}\) \(\large{\frac{N}{m}}\)
\(\large{ M }\) = maximum bending moment \(\large{lbf-in}\) \(\large{N-mm}\)
\(\large{ A, B, C }\) = point of intrest on frame - -
\(\large{ L }\) = span length under consideration \(\large{in}\) \(\large{mm}\)
\(\large{ R }\) = vertical reaction load at bearing point \(\large{lbf}\) \(\large{N}\)

 

diagrams

  • Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
  • Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

Piping Designer Logo 1

Tags: Frame Support