Two Member Frame - Fixed/Pin Top Uniformly Distributed Load
Article Links |
Two Member Frame - Fixed/Pin Top Uniformly Distributed Load formulas
Important Value |
|
\(\large{ e \;\;=\;\; \frac{h}{L} }\) | |
\(\large{ \beta \;\;=\;\; \frac{I_h}{I_v} }\) | |
Support reaction |
|
\(\large{ R_A \;\;=\;\; \frac{w\;L}{2} \; \left( \frac{ 3\;\beta\;e \;+\; 5 }{3\; \beta\;e \;+\; 4 } \right) }\) | |
\(\large{ R_C \;\;=\;\; \frac{3\;w\;L}{2} \; \left( \frac{ \beta\;e \;+\; 1 }{3\; \beta\;e \;+\; 4 } \right) }\) | |
\(\large{ H_A = H_C \;\;=\;\; \frac{3\; w\;L^2 }{ 4\;h\; \left(3\; \beta\;e \;+\; 4 \right) } }\) | |
Bending Moment |
|
\(\large{ M_A \;\;=\;\; \frac{ w\;L^2 }{ 4\; \left(3\; \beta\;e \;+\; 4 \right) } }\) | |
\(\large{ M_B \;\;=\;\; \frac{ w\;L^2 }{ 2\; \left( 3\;\beta\;e \;+\; 4 \right) } }\) |
Where:
Units | English | Metric |
\(\large{ \Delta }\) = deflection or deformation | \(\large{in}\) | \(\large{mm}\) |
\(\large{ h }\) = height of frame | \(\large{in}\) | \(\large{mm}\) |
\(\large{ H }\) = horizontal reaction load at bearing point | \(\large{lbf}\) | \(\large{N}\) |
\(\large{ I_h }\) = horizontal member second moment of area (moment of inertia) | \(\large{in^4}\) | \(\large{mm^4}\) |
\(\large{ I_v }\) = vertical member second moment of area (moment of inertia) | \(\large{in^4}\) | \(\large{mm^4}\) |
\(\large{ w }\) = load per unit length | \(\large{\frac{lbf}{in}}\) | \(\large{\frac{N}{m}}\) |
\(\large{ M }\) = maximum bending moment | \(\large{lbf-in}\) | \(\large{N-mm}\) |
\(\large{ A, B, C }\) = point of intrest on frame | - | - |
\(\large{ L }\) = span length under consideration | \(\large{in}\) | \(\large{mm}\) |
\(\large{ R }\) = vertical reaction load at bearing point | \(\large{lbf}\) | \(\large{N}\) |
diagrams
- Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
- Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.
Tags: Frame Support