Four Span Continuous Beam - Equal Spans, Uniform Load on Two Spans
- See Article - Beam Design Formulas
| Four Span Continuous Beam - Equal Spans, Uniform Load on Two Spans formula | ||
| \( R_1 \;=\; V_1 \;=\; 0.446\cdot w\cdot L \) \( R_2 \;=\; 0.572\cdot w\cdot L \) \( R_3 \;=\; 0.464\cdot w\cdot L \) \( R_4 \;=\; 0.572\cdot w\cdot L \) \( R_5 \;=\; - \;0.054\cdot w\cdot L \) \( V_{2_1} \;=\; 0.0554\cdot w\cdot L \) \( V_{2_2} \;=\; V_{3_1} \;=\; 0.018\cdot w\cdot L \) \( V_{3_2} \;=\; 0.482\cdot w\cdot L \) \( V_{4_1} \;=\; 0.518\cdot w\cdot L \) \( V_{4_2} \;=\; V_5 \;=\; 0.054\cdot w\cdot L \) \( M_1 \; \left( 0.446\;L \; from \; R_1 \right) \;=\; 0.0996 \cdot w\cdot L^2 \) \( M_2 \; \left(at\; R_2 \right) \;=\; -\; (0.0536\cdot w\cdot L^2 ) \) \( M_3 \; \left(at\; R_3 \right) \;=\; - \; (0.0357\cdot w\cdot L^2 ) \) \( M_4 \; \left( 0.518\;L \; from \; R_4 \right) \;=\; 0.805\cdot w\cdot L^2 \) \( M_5 \; \left(at\; R_4 \right) \; \;=\; -\; (0.0536\cdot w\cdot L^2) \) \( \Delta_{max} \; \left(at\; 0.477\;L \; from \; R_1 \right) \;=\; \dfrac{ 0.0097\cdot w\cdot L^4 }{ \lambda\cdot I } \) | ||
| Symbol | English | Metric | 
| \( \Delta \) = deflection or deformation | \(in\) | \(mm\) | 
| \( w \) = load per unit length | \(lbf\;/\;in\) | \(N\;/\;m\) | 
| \( M \) = maximum bending moment | \(lbf-in\) | \(N-mm\) | 
| \( V \) = maximum shear force | \(lbf\) | \(N\) | 
| \( \lambda \) (Greek symbol lambda) = modulus of elasticity | \(lbf\;/\;in^2\) | \(Pa\) | 
| \( R \) = reaction load at bearing point | \(lbf\) | \(N\) | 
| \( I \) = second moment of area (moment of inertia) | \(in^4\) | \(mm^4\) | 
| \( L \) = span length under consideration | \(in\) | \(mm\) | 
 
Diagram Symbols
Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

