Four Span Continuous Beam - Equal Spans, Uniform Load on Two Spans
Four Span Continuous Beam - Equal Spans, Uniform Load on Two Spans formula |
||
\(\large{ R_1 = V_1 \;\;=\;\; 0.446\;w\;L }\) \(\large{ R_2 \;\;=\;\; 0.572\;w\;L }\) \(\large{ R_3 \;\;=\;\; 0.464\;w\;L }\) \(\large{ R_4 \;\;=\;\; 0.572\;w\;L }\) \(\large{ R_5 \;\;=\;\; - \;0.054\;w\;L }\) \(\large{ V_{2_1} \;\;=\;\; 0.0554\;w\;L }\) \(\large{ V_{2_2} = V_{3_1} \;\;=\;\; 0.018\;w\;L }\) \(\large{ V_{3_2} \;\;=\;\; 0.482\;w\;L }\) \(\large{ V_{4_1} \;\;=\;\; 0.518\;w\;L }\) \(\large{ V_{4_2} = V_5 \;\;=\;\; 0.054\;w\;L }\) \(\large{ M_1 \; \left( 0.446\;L \; from \; R_1 \right) \;\;=\;\; 0.0996\;w\;L^2 }\) \(\large{ M_2 \; \left(at\; R_2 \right) \;\;=\;\; -\;0.0536\;w\;L^2 }\) \(\large{ M_3 \; \left(at\; R_3 \right) \;\;=\;\; - \;0.0357\;w\;L^2 }\) \(\large{ M_4 \; \left( 0.518\;L \; from \; R_4 \right) \;\;=\;\; 0.805\;w\;L^2 }\) \(\large{ M_5 \; \left(at\; R_4 \right) \; \;\;=\;\; -\; 0.0536\;w\;L^2 }\) \(\large{ \Delta_{max} \; \left(at\; 0.477\;L \; from \; R_1 \right) \;\;=\;\; \frac{0.0097\;w\;L^4}{\lambda\; I} }\) |
||
Symbol | English | Metric |
\(\large{ \Delta }\) = deflection or deformation | \(\large{in}\) | \(\large{mm}\) |
\(\large{ w }\) = load per unit length | \(\large{\frac{lbf}{in}}\) | \(\large{\frac{N}{m}}\) |
\(\large{ M }\) = maximum bending moment | \(\large{lbf-in}\) | \(\large{N-mm}\) |
\(\large{ V }\) = maximum shear force | \(\large{lbf}\) | \(\large{N}\) |
\(\large{ \lambda }\) (Greek symbol lambda) = modulus of elasticity | \(\large{\frac{lbf}{in^2}}\) | \(\large{Pa}\) |
\(\large{ R }\) = reaction load at bearing point | \(\large{lbf}\) | \(\large{N}\) |
\(\large{ I }\) = second moment of area (moment of inertia) | \(\large{in^4}\) | \(\large{mm^4}\) |
\(\large{ L }\) = span length under consideration | \(\large{in}\) | \(\large{mm}\) |
diagrams
- Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
- Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.
Article Links |
Tags: Beam Support Equations