Four Span Continuous Beam - Equal Spans, Uniform Load on Two Spans

on . Posted in Structural Engineering

cb5s 3A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Four Span Continuous Beam - Equal Spans, Uniform Load on Two Spans formula

\(\large{ R_1 = V_1   \;\;=\;\; 0.446\;w\;L    }\) 

\(\large{ R_2  \;\;=\;\; 0.572\;w\;L    }\) 

\(\large{ R_3  \;\;=\;\; 0.464\;w\;L    }\) 

\(\large{ R_4  \;\;=\;\; 0.572\;w\;L    }\)

\(\large{ R_5  \;\;=\;\; - \;0.054\;w\;L    }\)

\(\large{ V_{2_1}   \;\;=\;\; 0.0554\;w\;L    }\)

\(\large{ V_{2_2} = V_{3_1}  \;\;=\;\; 0.018\;w\;L    }\)

\(\large{ V_{3_2}   \;\;=\;\; 0.482\;w\;L    }\)

\(\large{ V_{4_1}   \;\;=\;\; 0.518\;w\;L    }\)

\(\large{ V_{4_2} = V_5  \;\;=\;\; 0.054\;w\;L    }\)

\(\large{ M_1  \;   \left( 0.446\;L  \;  from  \; R_1 \right) \;\;=\;\; 0.0996\;w\;L^2   }\)

\(\large{ M_2  \;  \left(at\; R_2 \right)   \;\;=\;\; -\;0.0536\;w\;L^2    }\)

\(\large{ M_3  \; \left(at\; R_3 \right)    \;\;=\;\; - \;0.0357\;w\;L^2    }\)

\(\large{ M_4  \;   \left( 0.518\;L  \; from \; R_4 \right) \;\;=\;\; 0.805\;w\;L^2   }\)

\(\large{ M_5  \; \left(at\; R_4 \right)  \;   \;\;=\;\; -\; 0.0536\;w\;L^2    }\)

\(\large{ \Delta_{max}  \;  \left(at\;  0.477\;L  \;  from \; R_1 \right)    \;\;=\;\;  \frac{0.0097\;w\;L^4}{\lambda\; I}    }\)

Symbol English Metric
\(\large{ \Delta }\) = deflection or deformation \(\large{in}\) \(\large{mm}\)
\(\large{ w }\) = load per unit length \(\large{\frac{lbf}{in}}\) \(\large{\frac{N}{m}}\)
\(\large{ M }\) = maximum bending moment \(\large{lbf-in}\) \(\large{N-mm}\)
\(\large{ V }\) = maximum shear force \(\large{lbf}\) \(\large{N}\)
\(\large{ \lambda  }\)   (Greek symbol lambda) = modulus of elasticity \(\large{\frac{lbf}{in^2}}\) \(\large{Pa}\)
\(\large{ R }\) = reaction load at bearing point \(\large{lbf}\) \(\large{N}\)
\(\large{ I }\) = second moment of area (moment of inertia) \(\large{in^4}\) \(\large{mm^4}\)
\(\large{ L }\) = span length under consideration \(\large{in}\) \(\large{mm}\)

 

diagrams

  • Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
  • Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

Article Links

 

 

 

 

 

 

 

 

 

Piping Designer Logo Slide 1

 

Tags: Beam Support Equations