Nomenclature & Symbols for Engineering, Mathematics, and Science
Formula nomenclature is a system of names or terms represented by letters and the Greek alphabet assigned to represent equation physical quantities. Definition symbols vary widely and do not necessarily represent the information being presented the way an abbreviation does. These alphabetical lists contain symbols, greek symbols, definitions, US units, metric units, dimensionless numbers, constants, and constant values.
Formula Nomenclature & Symbols
A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z
Mathematics Links |
Nomenclature & Symbols |
Unit Equalities
Symbol | Type | Units |
---|---|---|
Ampere \((A)\), \(\;(I)\) |
English | \(I\) |
Metric | \(I\) = \(\large{\frac{C}{s}}\) | |
SI | \(C - s^{-1}\) | |
Btu \((Btu)\) |
English | \(lbf-ft\) |
Metric | \(Btu\) = \(J\) = \(kJ\) = \(W-h\) | |
SI | \(J\) | |
Celsius \((C)\) |
English | - |
Metric | \(C\) | |
SI | \(x+273.15\;K\) | |
Coulomb \((C)\) |
English | - |
Metric | \(C\) = \(A-s\) | |
SI | \(A-s\) | |
Farad \((F)\) |
English | - |
Metric | \(F\) = \(\large{\frac{s^4-A^2}{kg-m^2}}\) = \(\large{\frac{S^2-C^2}{kg-m^2}}\) = \(\large{\frac{C}{V}}\) = \(\large{\frac{A-s}{V}}\) = \(\large{\frac{W-s}{V^2}}\) = \(\large{\frac{J}{V^2}}\) = \(\large{\frac{N-m}{V^2}}\) = \(\large{\frac{C^2}{J}}\) = \(\large{\frac{C^2}{N-m}}\) = \(\large{\frac{S}{\Omega}}\) = \(\large{\frac{1}{\Omega-Hz}}\) = \(\large{\frac{S}{Hz}}\) = \(\large{\frac{s^2}{H}}\) | |
SI | \(s^4-A^2-kg^{-1}-m^{-2}\) | |
Gauss \((G)\) |
English | - |
Metric | \(G\) = \(\large{\frac{T}{10^4}}\) = \(Mx-cm^2\) = \(\large{\frac{g}{Bi-s^2}}\) | |
SI | \(T-10^{-4}\) | |
Henry \((H)\) |
English | - |
Metric | \(H\) = \(\large{\frac{kg-m^2}{s^2-A^2}}\) = \(\large{\frac{N-m}{A^2}}\) = \(\large{\frac{kg-m^2}{C^2}}\) = \(\large{\frac{J}{A^2}}\) = \(\large{\frac{T-m^2}{A}}\) = \(\large{\frac{Wb}{A}}\) = \(\large{\frac{V-s}{A}}\) = \(\large{\frac{s^2}{F}}\) = \(\large{\frac{\Omega}{Hz}}\) = \(\Omega-s\) | |
SI | \(kg-m^2-s^{-2}-A^{-2}\) | |
Hertz \((Hz)\) |
English | - |
Metric | \(Hz\) = \(s^{-1}\) (one cycle per sec) | |
SI | \(s^{-1}\) | |
Horespower \((hp)\) |
English | \(hp\) |
Metric | \(hp\) = \(W\) | |
SI | \(W\) | |
Joule \((J)\) |
English | \(lbf-ft\) |
Metric | \(J\) = \(\large{\frac{kg-m^2}{s^2}}\) = \(N-m\) = \(Pa-m^3\) = \(W-s\) = \(C-V\) = \(\Omega-A^2-s\) | |
SI | \(kg-m^2-s^{-2}\) | |
Joule-sec \((J-s)\) |
English | \(\large{\frac{lbf-ft}{sec}}\) |
Metric | \(J-s\) = \(\large{\frac{kg-m^2}{s}}\) | |
SI | \(kg-m^2-s^{-1}\) | |
Kelvin \((K)\) |
English | - |
Metric | K | |
SI | \(x-273.15\;C\) | |
Maxwell \((Mx)\) |
English | - |
Metric | \(Mx\) = \(\large{\frac{Wb}{10^{8}}}\) = \(\large{\frac{G}{cm^2}}\) | |
SI | \(Wb-10^{-8}\) | |
Newton \((N)\) |
English | \(lbf\) |
Metric | \(N\) = \(\large{\frac{kg-m}{s^2}}\) | |
SI | \(kg-m-s^{-2}\) | |
Newton-meter \((N-m)\) |
English | \(lbf-ft\) |
Metric | \(N-m\) = \(\large{\frac{kg-m^2}{s^2}}\) | |
SI | \(kg-m^2-s^{-2}\) | |
Ohm \((\Omega)\), \(\;(R)\) |
English | \(\Omega\) |
Metric | \(\Omega\) = \(\large{\frac{kg-m^2}{s^3-A^2}}\) = \(\large{\frac{kg-m^2}{s-C^2}}\) = \(\large{\frac{J}{s-A^2}}\) = \(\large{\frac{V}{A}}\) = \(\large{\frac{1}{S}}\) = \(\large{\frac{W}{A^2}}\) = \(\large{\frac{V^2}{W}}\) = \(\large{\frac{s}{F}}\) = \(\large{\frac{H}{s}}\) = \(\large{\frac{J-s}{C^2}}\) | |
SI | \(kg-m^2-s^{-3}-A^{-2}\) | |
Poise \((P)\) |
English | \(\large{\frac{lbf}{ft-sec}}\) |
Metric | \(P\) = \(\large{\frac{kg}{0.1\;m-s}}\) = \(1\;dyn-s-cm^2\) = \(\large{\frac{N-s}{m^2}}\) | |
SI | \(kg-0.1\;m^{-1}-s^{-1}\) | |
Pascal \((Pa)\) |
English | \(\large{\frac{lbf}{in^2}}\) |
Metric | \(Pa\) = \(\large{\frac{kg}{m-s^2}}\) = \(\large{\frac{N}{m^2}}\) = \(\large{\frac{J}{m^3}}\) | |
SI | \(kg-m^{-1}-s^{-2}\) | |
Pascal-sec \((Pa-s)\) |
English | \(\large{\frac{lbf-sec}{ft^2}}\) |
Metric | \(Pa-s\) = \(\large{\frac{kg}{m-s}}\) = \(\large{\frac{N-s}{m^2}}\) = \(10\;P\) | |
SI | \(kg-m^{-1}-s^{-1}\) | |
MegaPascal \((MPa)\) |
English | \(\large{\frac{lbf}{in^2}}\) |
Metric | \(MPa\) = \(\large{\frac{N}{mm^2}}\) | |
SI | \(N-mm^{-2}\) | |
Siemens \((S)\) |
English | - |
Metric | \(S\) = \(\large{\frac{s^3-A^2}{kg-m^2}}\) | |
SI | \(s^3-A^2-kg^{-1}-m^{-2}\) | |
Tesla \((T)\) |
English | - |
Metric | \(T\) = \(\large{\frac{kg}{s^2-A}}\) = \(\large{\frac{V-s}{m^2}}\) = \(\large{\frac{N}{A-m}}\) = \(\large{\frac{J}{A-m^2}}\) = \(\large{\frac{H-A}{m^2}}\) = \(\large{\frac{Wb}{m^2}}\) = \(\large{\frac{kg}{C-s}}\) = \(\large{\frac{N-s}{C-m}}\) = \(\large{\frac{kg}{A-s^2}}\) | |
SI | \(kg-s^{-2}-A^{-1}\) | |
Torr \((Torr)\) |
English | - |
Metric | \(Torr\) = \(Pa\) | |
SI | \(Pa\) | |
Volt \((V)\) |
English | \(V\) |
Metric |
\(V\) = \(\large{\frac{kg-m^2}{s^{3}-A}}\) = \(A-\Omega\) = \(\large{\frac{Wb}{s}}\) = \(\large{\frac{W}{A}}\) = \(\large{\frac{J}{C}}\) = \(\large{\frac{eV}{e}}\)
|
|
SI | \(kg-m^2-s^{-3}-A^{-1}\) | |
Watt \((W)\), \(\;(P)\) |
English | \(\large{\frac{lbf-ft^2}{ssec^3}}\) |
Metric | \(W\) = \(\large{\frac{kg-m^2}{s^3}}\) = \(\large{\frac{J}{s}}\) = \(\large{\frac{N-m}{s}}\) | |
SI | \(kg-m^2-s^{-3}\) | |
Weber \((Wb)\) |
English | \(\large{\frac{V}{sec}}\) |
Metric | \(Wb\) = \(\large{\frac{kg-m^2}{s^2-A}}\) = \(\large{\frac{N-m}{A}}\) = \(\large{\frac{J}{A}}\) = \(\Omega-C\) = \(V-s\) = \(H-S\) = \(T-m^2\) = \(10^8-Mx\) | |
SI | \(kg-m^2-s^{-2}-A^{-1}\) |