Formula Symbols - G

on . Posted in Nomenclature & Symbols for Engineering, Mathematics, and Science

Mathematics and Management Rules and Symbols

"G" Formula Symbols

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

SymbolGreek SymbolDefinitionEnglishMetricSIValue
\(g\) - g-factor - \(\large{ \frac{C}{kg} }\) \(C- kg^{-1}\) -
\(Ga\) - Galileo number diensionless diensionless diensionless -
\(\gamma \) gamma gamma ray - - - -
\(G\) - gas - - - -
\(Z\) - gas compressibility factor diensionless diensionless diensionless -
\( R\) - gas constant \(\large{ \frac{lbf-ft}{lbmol-R} }\) \(\large{ \frac{J}{kmol-K} }\) \(J- kmol^{-1}-K^{-1}\)  \(8.31446261815324\) \(\large{ \frac{J}{kmol-K} }\)
\(G\) - gas density \(\large{\frac{lbm}{ft^3}}\) \(\large{\frac{kg}{m^3}}\) \(kg-m^{-3}\) -
\(G_ga\) - gas mass transfer coefficient \(\large{\frac{1}{sec}}\) \(\large{\frac{1}{s}}\) \(1-s^{-1}\) -
\(p_l\) - gas pressure loss through piping \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(G_g\) - gas specific gravity dimensionless diensionless diensionless -
\(p_g\) - gauge pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
- - Gay-Lussac's law - - - -
\(R\) - generic design quanity (force, shear, moment, etc.) for LRFD design - - - -
\(R_n\) - generic normal capacity (force, shear, moment, etc.) for LRFD design - - - -
\(R_u\) - generic max. quanity (force, shear, moment, etc.) from factored loads for LRFD design - - - -
\(G\) - geometric flux \(ft^2\) \(m^2\) \(m^2\) -
\(G\) - Gibbs energy  - - - -
\(G\) - Gibbs function - - - -
\(E\) - glide ratio dimensionless diensionless diensionless -
\(\varphi\) varphi golden ratio dimensionless diensionless diensionless -
\(G\) - Gortler number dimensionless diensionless diensionless -
\(f\) - gradient - - - -
\(Gz\) - Graetz number dimensionless diensionless diensionless -
- - Graham's law \(\large{\frac{lbm}{mol}}\) \(\large{\frac{kg}{mol}}\) \(kg-mol^{-1}\) -
\(Gr\) - Grashof number dimensionless diensionless diensionless -
\(g\) - gravity \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\) \(m-s^{-2}\) -
\(g_c\)   gravity conversion constant \(\large{\frac{lbm-ft}{lbf-sec^2}}\) - - -
\(J\) - gravimetric air/fuel ratio dimensionless diensionless diensionless -
\(x\) - gravimetric factor dimensionless diensionless diensionless -
\(g\) - gravitational acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\) \(m-s^{-2}\) -
\( F\), \(\;F_g\) - gravitational force \(lbf\) \(N\) \(kg - m - s^{-2}\) -
\( G\), \(\;g_c\) - gravitational constant \(\large{\frac{lbf-ft^2}{lbm^2}}\)  \(\large{\frac{N - m^2}{kg^2}}\)  \(N - m^2 -kg^{-2}\) \(6.674\;30\;x\;10^{-11}\) \(\large{\frac{N - m^2}{kg^2}}\) 
\(g_c\) - gravitational conversion constant \(\large{\frac{lbm-ft}{lbf-sec^2}}\) -  - -
\(E_g\), \(\;PE_g\) - gravitational potential energy \(lbf-ft\) \(J\) \(kg - m^2 - s^{-2}\) -
\(u\) - gravitational water content \(lbf-ft\) \(J\) \(kg - m^2 - s^{-2}\) -
\(c_g\) - group velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\) \(m-s^{-1}\) -
Symbol Greek Symbol Definition English Metric SI Value

 

Piping Designer Logo Slide 1