Two Member Frame - Fixed/Pin Side Uniformly Distributed Load
Structural Related Articles
- See beam design formulas
- See frame design formulas
- See plate design formulas
- See geometric properties of structural shapes
- See welding stress and strain connections
- See welding symbols
Two Member Frame - Fixed/Pin Side Uniformly Distributed load formulas
\(\large{ e = \frac{h}{L} }\) | |
\(\large{ \beta = \frac{I_h}{I_v} }\) | |
\(\large{ R_A = R_C = \frac{w\;h}{4} \; \left( \frac{\beta\;e^2 }{3\; \beta\;e \;+\; 4 } \right) }\) | |
\(\large{ H_A = \frac{w\;h}{2} \; \left( \frac{3\; \beta\;e \;+\; 5 }{3\; \beta\;e \;+\; 4 } \right) }\) | |
\(\large{ H_C = \frac{3\;w\;h}{2} \; \left( \frac{ \beta\;e \;+\; 1 }{3\; \beta\;e \;+\; 4 } \right) }\) | |
\(\large{ M_A = \frac{w\;h^2}{4} \; \left( \frac{ \beta\;e \;+\; 2 }{3\; \beta\;e \;+\; 4 } \right) }\) | |
\(\large{ M_B = \frac{w\;h^2}{4} \; \left( \frac{\beta\;e }{3\; \beta\;e \;+\; 4 } \right) }\) |
Where:
\(\large{ h }\) = height of frame
\(\large{ H }\) = horizontal reaction load at bearing point
\(\large{ w }\) = load per unit length
\(\large{ M }\) = maximum bending moment
\(\large{ A, B, C }\) = points of intersection on frame
\(\large{ R }\) = reaction load at bearing point
\(\large{ I }\) = second moment of area (moment of inertia)
\(\large{ I_h }\) = horizontal second moment of area (moment of inertia)
\(\large{ I_v }\) = vertical second moment of area (moment of inertia)
\(\large{ L }\) = span length of the bending member