Formula Symbols - I

on . Posted in Nomenclature & Symbols for Engineering, Mathematics, and Science

Mathematics and Management Rules and Symbols

"I" Formula Symbols

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

SymbolGreek SymbolDefinitionEnglishMetricSIValue
\(R\) - ideal gas constant \(\large{ \frac{lbf-ft}{lbmol-R} }\) \(\large{ \frac{J}{kmol-K} }\) \(J-kmol^{-1} - K^{-1}\)  \(8.31446261815324\) \(\large{ \frac{J}{kmol-K} }\)
- - ideal gas law \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
- - ideal gas law with compressibility factor \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(lx\) - illuminance - - - -
\(b\) - impact parameter - - - -
\(Z_o\) - impedance of vacuum \(\Omega\) \(\Omega\) \(kg-m^2-s^{-3}-A^{-2}\) \(376.730\;313\;461...\) \(\Omega\)
\(d\), \(\;d_i\) - impeller diameter \(in\) \(mm\) \(mm\) -
\(I\) - impulse \(lbf-sec\) \(N-s\) \(kg-m-s^{-1}\) -
\(I\) - impulse velocity \(lbf-sec\) \(N-s\) \(kg-m-s^{-1}\) -
\(I\) - impulse with time \(lbf-sec\) \(N-s\) \(kg-m-s^{-1}\) -
\(H\), \(\;L\) - inductance \(H\) \(H\) \(kg-m^2-s^{-2}-A^{-2}\) -
\(X_L\) - inductive reactance \(H\) \(H\) \(kg-m^2-s^{-2}-A^{-2}\) -
\(I_a\) - initial abstraction \(in\) \(mm\) \(mm\) -
\(a_i\) - initial acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\)  \(m- s^{-2}\) -
\(\omega_i\) omega initial angular velocity \(\large{\frac{rad}{sec}}\) \(\large{\frac{rad}{s}}\)  \(rad - s^{-1}\) -
\(l_i\) - initial length \(ft\) or \(in\) \(m\) or \(mm\) \(m\) or \(mm\) -
\(d_1\) - initial maneuver distance \(ft\) \(m\) \(m\) -
\(x_i\) - initial position - - - -
\(T_i\) - initial temperature \(F\) \(C\) \(x+273.15\;K\) -
\(t_i\) - initial time \(sec\) \(s\) \(s\) -
\(v_i\) - initial velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)  \(m- s^{-1}\) -
\(V_i\) - initial volume \(ft^3\) or \(in^3\) \(m^3\) or \(mm^3\) \(m^3\) or \(mm^3\) -
\(p_i\) - inlet pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(E_i\) - input energy \(lbf-ft\) \(J\) \(kg - m^2 - s^{-2}\) -
\(W_i\) - input work \(lbf-ft\) \(J\) \(kg - m^2 - s^{-2}\) -
\(ID\) - inside diameter \(in\) \(mm\) \(mm\) -
\(ID\) - inside diameter of pipe \(in\) \(mm\) \(mm\) -
\(D_b\) - inside diameter of valve body outlet \(in\) \(mm\) \(mm\) -
\(D_p\) - inside diameter of outlet pipe \(in\) \(mm\) \(mm\) -
\(a_i\) - instantaneous acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\)  \(m- s^{-2}\)   -
\(\alpha_i\) alpha instantaneous angular acceleration \(\large{\frac{rad}{sec^2}}\) \(\large{\frac{rad}{s^2}}\)  \(rad- s^{-2}\)   -
\(v_i\) - instantaneous velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)  \(m- s^{-1}\)   -
\(P\) - internal design pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(U\) - internal energy \(Btu\) \(J\) \(kg - m^2 - s^{-2}\) -
\(p_i\) - internal pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(r_i\) - internal radius \(in\) \(mm\) \(mm\) -
\(e\) - internal roughness \(in\) \(mm\) \(mm\) -
\(d\) - internal pipe diameter \(in\) \(mm\) \(mm\) -
\(ISD\) - intersection sight distance \(ft\) \(m\) \(m\) -
\(G_0^{-1}\) - inverse conductance quantum \(\Omega\) \(\Omega\) \(kg-m^2-s^{-3}-A^{-2}\) \(12\;906.403\;72\) \(\Omega\)
\(\alpha^{-1}\) alpha inverse fine structure constant dimensionless dimensionless dimensionless \(137.035\;999\;084\;(21)\)
\(Ir\), \(\;\xi\) xi Iribarren number dimensionless dimensionless dimensionless -
\(\alpha\) alpha isentropic compressibility - - - -
\(k\) - isentropic exponent - - - -
\(\beta\) beta isobaric compressibility - - - -
\(H\) - isobaric process - enthalpy \(\large{\frac{Btu}{lbm}}\) \(\large{\frac{kJ}{kg}}\) \(kJ- kg^{-1}\) -
\(S\) - isobaric process - entropy \(\large{\frac{lbf-ft}{F}}\)   \(\large{\frac{J}{K}}\) \(J- K^{-1}\) -
\(\kappa\) kappa isothermal compressibility - - - -
Symbol Greek Symbol Definition English Metric SI Value

 

Piping Designer Logo Slide 1