Formula Symbols - P

on . Posted in Nomenclature & Symbols for Engineering, Mathematics, and Science

Mathematics and Management Rules and Symbols

 

Formula Symbols

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

P

SymbolGreek SymbolDefinitionEnglishMetricSIValue
\(\partial\) partial partial derivative - - - -
\(\rho_p\) rho particle density \(\large{\frac{lbm}{ft^3}}\) \(\large{\frac{kg}{m^3}}\) \(kg-m^{-3}\)  -
\(d_p\) - particle diameter - \(nm\) \(nm\)  -
\(m_p\) - particle mass \(lbm\) \(kg\) \(kg\)  -
\(R\), \(\;r\) - particle position vector - - -  -
\(p_w\) - partial pressure of water vapot in moist air  \(\large{\frac{lbf}{in^2}}\) \(Pa\)  \(kg-m^{-1}-s^{-2}\) -
\(\Delta p\) - Pascal's law \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg-m^{-1}-s^{-2}\) -
\(PSD\) - passing sight distance \(ft\) \(m\) \(m\) -
\(Pe\) - Peclet number dimensionless  -
\(N_p\) - Peel number dimensionless  -
\(P\) - perimeter \(ft\) \(m\) \(m\)  -
\(T\) - period - - -  -
\(T\) - periodic time - - -  -
\(PF\) - performance factor - - -  -
\(PN\) - performance number - - -  -
\(\mu\) mu permeability  \(ft^2\) \(m^2\) \(m^2\)  -
\(k\) - permeability coefficient \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\) \(m-s^{-1}\) -
\(\mu_o\) mu permeability of vacuum - \(\large{\frac{H}{m}}\) \(H-m^{-1}\)  \(1.256\;637\;062\;12\;(19)\;x\;10^{-6}\) \(\large{\frac{H}{m}}\)
\(\epsilon\) epsilon permittivity - \(\large{\frac{F}{m}}\)  \(H-m^{-1}\)  -
\(\epsilon_o\) epsilon permittivity of vacuum - \(\large{\frac{F}{m}}\)  \(H-m^{-1}\)  \(8.854\;187\;8128\;(13)\;x\;10^{-12}\) \(\large{\frac{F}{m}}\)
\(p\) - Peng-Robinson equation of state \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg-m^{-1}-s^{-2}\) -
\(y\) - perpendicular distance to the neutral axis \(in\) \(mm\) \(mm\) -
\(r_{\perp}\) - perpendicular radius \(ft\) or \(in\) \(m\) or \(mm\) \(m\) or \(mm\)  -
\(pH\) - ph dimensionless  -
\(\gamma \) gamma photon - - -  -
\(\pi\) pi Pi dimensionless constant \(3.141\;592\;653 ...\)
\(C\) - Pierce parameter dimensionless  -
\(n_{pig}\) - pigging efficiency dimensionless -
\(d\), \(\;d_p\) - pipe inside diameter ID \(in\) \(mm\) \(mm\)  -
\(l\), \(\;l_p\) - pipe length \(ft\) \(m\) \(m\) -
\(t\), \(\;t_p\) - pipe thickness \(in\) \(mm\) \(mm\)  -
\(W_p\) - pipe weight \(lbf\) \(N\) \(kg-m-s^{-2}\)  -
\(\rho\) rho pipeline parameter dimensionless -
\(F_p\) - piping geometry factor dimensionless  -
\(PDV\) - piston deck volume \(in^3\) \(cc^3\) \(cc^3\)  -
\(p\) - pitch \(in\) \(mm\) \(mm\) -
\(q_p\) - Planck change \(ft\) \(m\) \(m\) \(1.88\;x\;10^{-18}\) \(m\)
\(Pl\), \(\;h\) - Planck constant \(\large{\frac{lbf-ft}{sec}}\)  \(J-s\) \(kg-m^2-s^{-1}\) \(6.626\;0693\;(11)\;x\;10^{-34}\) \(J-s\)
\(E_p\) - Planck energy \(lbf-ft\) \(J\) \(kg-m^2-s^{-2}\) \(1.96\;x\;10^{9}\) \(J\)
\(Y\) - Planck function - - -  -
\(l_p\) - Planck length \(ft\) \(m\) \(m\) \(1.616\;24\;(12)\;x\;10^{-35}\) \(m\)
\(m_p\) - Planck mass \(lbm\) \(kg\) \(kg\) \(2.176\;45\;(16)\;x\;10^{-8}\) \(kg\)
\(T_p\) - Planck temperature \(F\) \(K\) \(x-273.15\;C\) \(1.416\;79\;(11)\;x\;10^{32}\) \(K\)
\(t_l\) - Planck time \(sec\) \(s\) \(s\) \(5.39\;21\;(40)\;x\;10^{-44}\) \(s\)
\(\alpha\), \(\;\beta\), \(\;\gamma\), \(\;\theta\), \(\;\phi\) alpha, beta, gamma, theta, phi plane angle \(deg\) \(rad\) \(rad\)  -
\(p\) - plasma pressure - - -  -
\(PI\)  - plastic index  dimensionless    -
\(PL\) - plastic limit dimensionless -
\(Z\) - plastic section modulus \(in^3\) \(mm^3\) \(mm^3\)  -
\(b\) - plate long side dimension \(ft\) \(m\) \(m\)  -
\(a\) - plate short side dimension \(ft\) \(m\) \(m\)  -
\(A,\;B,\;C,\;D,\;E\) - point of intersect on frame dimensionless -
\(O\) - point of origin - - -  -
\(v\) - Poiseuille's equation for compressible fluids \(\large{\frac{ft}{sec}}\)  \(\large{\frac{m}{s}}\)  \(m-s^{-1}\)   -
\(\mu\) mu Poisson's ratio dimensionless  -
\(J\) - polar moment of inertia \(in^4\) \(mm^4\) \(mm^4\) -
\(J\) - polar area moment of inertia \(in^4\) \(mm^4\) \(mm^4\)  -
\(e\) - polarization vector - - -  -
\(V\) - pollution emission rate \(\large{\frac{ft^3}{hr}}\)  \(\large{\frac{m^3}{h}}\)  \(m^3-h^{-1}\)  -
\(n\) - polytropic exponent dimensionless  -
\(J\) - polar moment of inertia \(in^4\) \(m^4\) \(m^4\)  -
\(P\), \(\;\phi\), \(\;n\) phi porosity dimensionless  -
\(\phi\) phi porous media - - -  -
\(x\) - position - - -  -
\(x_d\), \(\;\Delta x\) Delta position differential - - -  -
\(U\), \(\;V\) - potential difference - - -  -
\(PE\), \(\;E_p\) - potential energy \(lbf-ft\) \(J\) \(kg-m^2-s^{-2}\)  -
\(E_z\) - potential energy of a fluid at an elevation \(lbf-ft\) \(J\) \(kg-m^2-s^{-2}\) -
\(P\) - power (electric) \(\large{\frac{lbf-ft}{sec}}\)  \(W\) \(kg-m^2-s^{-3}\)   -
\(pf\) - power factor dimensionless  -
\(W\) - power jack load \(lbf\) \(N\) \(kg-m-s^{-2}\)   -
\( N_p\) - Power number dimensionless  -
\( PTR\) - power-to-heat ratio dimensionless  -
\(Pr\) - Prandtl number dimensionless  -
\(\beta\) beta Prater number dimensionless  -
\(p\) - pre-ignition cylinder pressure of an engion \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg-m^{-1}-s^{-2}\) -
\(\;p\) - pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg-m^{-1}-s^{-2}\)  -
\(\phi\) - pressure angle \(deg\) \(rad\) \(rad\)  -
\(C_p\), \(\;\beta\) beta pressure coefficient dimensionless  -
\(p_d\), \(\;\Delta p\) Delta pressure differential \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg-m^{-1}-s^{-2}\)  -
\(x_T\) - pressure differential ratio factor \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg-m^{-1}-s^{-2}\)  -
\(\Delta p\) Delta pressure drop \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg-m^{-1}-s^{-2}\) -
\(PG\) - pressure gradient \(\large{\frac{psi}{ft}}\) \(\large{\frac{Pa}{m}}\) \(Pa-m^{-1}\)   -
\(p\) - pressure gauge \(psig\) \(kPa\) \(kPa\)  -
\(p_{inc}\) - pressure increase \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg-m^{-1}-s^{-2}\)  -
\(\Delta P\) - pressure loss \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg-m^{-1}-s^{-2}\) -
\(\Delta P_f\) - pressure loss due to friction \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg-m^{-1}-s^{-2}\)  -
\(p\) - pressure of an ideal gas \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg-m^{-1}-s^{-2}\) -
\(F_L\) - pressure recovery factor - - -  -
\(P\) - pressure scale - - - -
\(\alpha\), \(\;\alpha_p\) alpha pressure wave velocity \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg-m^{-1}-s^{-2}\)  -
\(S\) - probability current density - - -  -
\(P\) - probability density - - -  -
\(\propto\) propto proportional to - - -  -
\(p\) - proton - - -  -
    proton g-factor dimensionless constant \(5.585\;694\;713\)
\(a_{gp}\) - proton gravitational coupling constant dimensionless constant \(8.09\;x\;10^{-37}\)
\(m\) - proton magnetic moment - - - -
\(m_p\)  - proton mass \(lbm\) \(kg\) \(kg\) \(1.672\;621\;923\;69(51)\;x\;10^{-27}\) \(kg\)
\(m_p c^2\) - proton rest energy \(MeV\) \(MeV\) \(MeV\)  \(938.272\;088\;16(29)\) \(MeV\)
\(m_p\) - proton rest mass \(lbm\) \(kg\) \(kg\) \(1.672\;621\;923\;69(51)\;x\;10^{-27}\) \(kg\)
\(\eta\) eta pulley efficiency - - -  -
\(\epsilon\) epsilon pulley loss factor - - -  -
\(\eta_p\) eta pump efficiency dimensionless -
\(PHP\), \(HP_p\) - pump horsepower \(\large{\frac{lbf-ft}{sec}}\) \(\large{\frac{Btu}{s}}\) \(Btu-s^{-1}\)  -
\(n\) - pump speed \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\) \(m-s^{-1}\)   -
Symbol Greek Symbol Definition English Metric   Value

 

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

 

P D Logo 1