Formula Symbols - A

on . Posted in Nomenclature & Symbols for Engineering, Mathematics, and Science

Mathematics and Management Rules and Symbols

"A" Formula Symbols

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

SymbolGreek SymbolDefinitionEnglishMetricSIValue
\(V_d\) - Abbe number dimensionless dimensionless dimensionless  -
\(T\)   absolute dry bulb temperature - \(K\) \(K\) -
\(AH\) - absolute humidity \(\large{\frac{lbm}{ft^3}}\) \(\large{\frac{g}{m^3}}\) \(g - m^{-3}\)  -
\(p_a\) - absolute pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\)  -
\(\epsilon \) epsilon absolute roughness \(in\) \(mm\) \(mm\)  -
\(T_a\) - absolute temperature \(F\) \(C\) \(x+273.15\;K\)  -
\(R_t\) - absolute thermal resistance - - - -
\(\mu \) mu absolute viscosity \(\large{\frac{lbf-sec}{ft^2}}\) \(Pa-s\) \(kg - m^{-1} - s^{-1}\)  -
\(\alpha\) alpha absorptance - - -  -
\(\alpha\) alpha absorptivity - - -  -
\(a\) - acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\) \(m - s^{-2}\)  -
\(a\) - acceleration from force \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\) \(m - s^{-2}\)  -
\(g\)   acceleration of free fall \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\) \(m - s^{-2}\) -
\(g\) - acceleration of gravity \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\) \(m - s^{-2}\)  \(9.806\;65\) \(\large{\frac{m}{s^2}}\)
\(\omega\) omega acentric factor dimensionless dimensionless dimensionless -
\(acfm\) - ACFM \(\large{\frac{ft^3}{min}}\) \(\large{\frac{m^3}{min}}\) \(m^3 - ^min{-1}\) -
\(\gamma\) gamma activity coefficient dimensionless dimensionless dimensionless  -
\(E_a\) - activation energy \(lbf-ft\) \(J\) \(kg - m^2 - s^{-2}\)  -
\(ACFM\) - actual flow rate \(\large{\frac{ft^3}{sec}}\) \(\large{\frac{m^3}{s}}\) \(m^3 - s^{-1}\)   -
\(e\) - actual vapor pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\)  -
\(l\) - acoustic path length between tranducer faces \(ft\) \(m\) \(m\)  -
\(p\) - acoustic pressure  \(\large{\frac{lbf-sec}{ft^2}}\) \(Pa\) \(kg-m^{-1}-s^{-1}\)  -
\(t_d\) - accustic signal downstream travel time \(sec\) \(s\) \(s\)  -
\(t_u\) - accustic signal downstream travel time \(sec\) \(s\) \(s\)  -
- - adjusts for the volume occupied by the gas particles \(in^3\) \(mm^3\) \(mm^3\) -
\(N_a\) - aeration number dimensionless dimensionless dimensionless  -
\(A\) - affinity - - -  -
\(t\) - age of concrete \(days\) \(days\)  \(days\) -
\(t_o\) - age of concrete at loading \(days\) \(days\) \(days\) -
\(t_c\)   age of concrete when drying starts at end of moist curing \(days\) \(days\) \(days\) -
\(a\) - aggregate content of concrete \(\large{\frac{lbm}{yd^3}}\) \(\large{\frac{kg}{m^3}}\) \(kg - m^{-3}\) -
\(A\) - air \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(\alpha\) alpha air content expressed as percentage dimensionless dimensionless dimensionless -
\(ACR\) - air consumption rate \(\large{\frac{ft^3}{min}}\) \(\large{\frac{m^3}{min}}\) \(m^3-min^{-1}\)  -
\(A\) - air content dimensionless dimensionless dimensionless -
\(CFM\), \(\;Q_a\) - air flow rate \(\large{\frac{ft^3}{sec}}\) \(\large{\frac{m^3}{s}}\) \(m^3 - s^{-1}\)  -
\(Q_a\) - air flow rate through piping \(\large{\frac{ft^3}{sec}}\) \(\large{\frac{m^3}{s}}\) \(m^3 - s^{-1}\)  -
\(AFR\) - air-fuel ratio dimensionless dimensionless dimensionless  -
\(AHP\) - air horsepower \(\large{\frac{lbf-ft}{sec}}\) \(\large{\frac{J}{s}}\) \(J - s^{-1}\)  -
\(T_i\) - air inlet temperature \(F\) \(C\) \(x+273.15\;K\)  -
\( m_a\) - air mixture \(lbm\) \(kg\) \(kg\)  -
\(T_o\) - air outlet temperature  \(F\) \(C\) \(x+273.15\;K\)  -
\(d\) - air pipe sizing \(in\) \(mm\) \(mm\) -
\(p\) - air pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(p_l\) - air pressure loss through piping \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\)  -
\(F_a\) - air resistance \(lbf\) \(N\) \(kg - m - s^{-2}\) -
\(F_a\) - air resistance of drag \(lbf\) \(N\) \(kg - m - s^{-2}\)  -
\(F_a\) - air resistance force \(lbf\) \(N\) \(kg - m - s^{-2}\)  -
\(c_a\) - air specific heat \(\large{\frac{Btu}{lbm-F}}\) \(\large{\frac{kJ}{kg-K}}\) \(kJ - kg^{-1} - K^{-1}\)   -
\(\gamma_a\) gamma air specific weight \(\large{\frac{lbf}{ft^3}}\) \(\large{\frac{N}{m^3}}\)  \(N - m^{-3}\)   -
\(v_a\) - air velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\) \(m - s^{-1}\) -
\(v_a\) - air velocity through piping \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)  \(m - s^{-1}\) -
\(s\) - AGMA stress number - - -  -
\(Al\) - Alfven number dimensionless dimensionless dimensionless  -
\(v_a\) - Alfven speed \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)  \(m - s^{-1}\)  -
\(A\) - algebric difference in grade dimensionless dimensionless dimensionless -
\(F_a\) - allowable axial stress \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\)  -
\(F_b\) - allowable bending stress \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\)  -
\(F_c\) - allowable compressive stress \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\)  -
\(P_a\) - allowable load \(lbf\) \(N\) \(kg - m - s^{-2}\) -
\(F_v\) - allowable shear stress \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\)  -
\(S\) - allowable stress \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\)  -
\(ASD\) - allowable stress design \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(S_a\) - allowable stress range \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(F_t\) - allowable tensile stress \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\)  -
\(A\) - allowance - - -  -
\(m_a\) - alpha particle mass \(lbm\) \(kg\) \(kg\) \(6.644\;657\;230\;(82)\;x\;10^{-27}\) \(kg\)
\(AC\) - alternating current \(I\) \(\large{\frac{C}{s}}\) \(C - s^{-1}\)  -
\(V_{mixture}\) - Amagat's law \(ft^3\) \(m^3\) \(m^3\)  -
\(T_a\) - ambient temperature \(F\) \(C\) \(x+273.15\;K\)  -
\(n\) - amount of substance - - -  -
\(A\) - amp \(I\) \(\large{\frac{C}{s}}\) \(C - s^{-1}\)  -
\(A\) - ampere \(I\) \(\large{\frac{C}{s}}\) \(C - s^{-1}\)  -
\(A\) - amplitude \(in\) \(mm\)  \(mm\)  -
\(A_l\) - amplitude (longitudinal) \(in\) \(mm\) \(mm\) -
\(AR\) - amplitude ratio - - -  -
\(\beta\) beta Andrade's beta - - -  -
\(\theta\), \(\;\phi\) theta, phi angular deflection \(deg\) \(rad\) \(rad\) -
\(\omega\) omega angular frequency \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\) \(rad - s^{-1}\) -
\(A\), \(\;B\), \(\;C\) - Antoine constant - - -  -
- - Antoine equation \(\large{\frac{lbf}{in^2}}\) \(\large{\frac{kg}{m-s^2}}\)  \(kg - m^{-1} - s^{-2}\) -
\(A\), \(\;\theta\), \(\;deg\) theta angle \(deg\) \(rad\) \(rad\)   -
\(\phi\) phi angle \(deg\) \(rad\) \(rad\)   -
\(\theta\) theta angle between a perpendicular vector to the area and the magnertic field \(deg\) \(rad\) \(rad\)  -
\(\theta\) theta angle between acoustic path and the pipe's longitudinal axis \(deg\) \(rad\) \(rad\)   -
\(\Delta A\) delta angle differential \(deg\) \(rad\) \(rad\)   -
\(Imp\) - angle impulse \(lbf-ft-sec\) \(N-m-s\) \(N-m-s\)  -
\(\theta\) theta angular rotation \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\)  \(rad - s^{-1}\)  -
\(\gamma \) gamma angle of twist \(deg\) \(rad\) \(rad\)   -
\(\alpha\) alpha angular acceleration \(\large{\frac{deg}{sec^2}}\) \(\large{\frac{rad}{s^2}}\)  \(rad - s^{-2}\)  -
\(\theta\) theta angular deflection \(in\) \(mm\) \(mm\)  -
\(\theta \) theta angular displacement \(deg\) \(rad\) \(rad\)  -
\(\omega\) omega angular frequency \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\)  \(rad - s^{-1}\)  -
\(H\) - angular impulse  \(\large{\frac{lbm-ft^2}{sec}}\)  \(\large{\frac{kg-m^2}{s}}\) \(kg-m^2-s^{-1}\)  -
\(L\) - angular momentum  \(\large{\frac{lbm-ft^2}{sec}}\)  \(\large{\frac{kg-m^2}{s}}\) \(kg-m^2-s^{-1}\)  -
\(L\) - angular momentum of an object with linear momentum  \(\large{\frac{lbm-ft^2}{sec}}\)  \(\large{\frac{kg-m^2}{s}}\)  \(kg-m^2-s^{-1}\) -
- - angular Planck constant  \(\large{\frac{lbf-ft}{sec}}\) \(J-s\) \(kg-m^2-s^{-1}\) \(1.054\;571\;726\;(47)\;x\;10^{-34}\) \(J-s\)
\(\theta\) theta angular position \(deg\) \(rad\) \(rad\)  -
\(\omega_0\) omega angular resonant frequency \(\large{\frac{1}{sec}}\) \(\large{\frac{1}{s}}\) \(1 - s^{-1}\) -
\(\theta\) theta angular rotation \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\) \(rad - s^{-1}\)  -
\(\omega\) omega angular speed \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\) \(rad - s^{-1}\)  -
\(\omega\), \(\;v_a\) omega angular velocity \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\)  \(rad - s^{-1}\)  -
\(d \omega\), \(\;\Delta \omega \) omega angular velocity differential \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\) \(rad - s^{-1}\)  -
\(\omega\) omega angular velovity of a rolling sphere \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\) \(rad - s^{-1}\) -
\(k\) - angular wavenumber \(\large{\frac{rad}{ft}}\) \(\large{\frac{rad}{m}}\) \(rad - m^{-1}\)  -
\(k\) - angular wave vector - - -  -
\(API_{gravity}\)   API gravity \(F\) \(C\) \(x+273.15\;K\) -
\(a\) - apothem \(in\) or \(ft\) \(mm\) or \(m\) \(mm\) or \(m\)  -
\(P\) - applied concentrated load \(lbf\) \(N\) \(kg - m - s^{-2}\) -
\(w\) - applied distributed load \(lbf\) \(N\) \(kg-m-s^{-2}\) -
\( F_a\) - applied force \(lbf\) \(N\) \(kg - m - s^{-2}\)  -
\(R\) - applied stress \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(Ar\) - Archimedes number dimensionless dimensionless dimensionless  -
\(B\) - Archimede's principle \(lbf\) \(N\) \(kg - m - s^{-2}\)  -
\(E\), \(\;V\) - arc voltage \(V\) \(V\) \(kg - m^2 - s^{-3} - A^{-1}\) -
\(\overset{\frown}{l}\), \(\; l_a\) - arc length \(in\) or \(ft\) \(mm\) or \(m\)  \(mm\) or \(m\) -
\(A\), \(\;S\) - area \(in^2\) or \(ft^2\) \(mm^2\) or \(m^2\) \(mm^2\) or \(m^2\)  -
\(A\), \(\;A_c\) - area cross-section \(in^2\) or \(ft^2\) \(mm^2\) or \(m^2\) \(mm^2\) or \(m^2\) -
\(A_{throat}\) - area cross the throat of a weld \(in^2\) or \(ft^2\) \(mm^2\) or \(m^2\) \(mm^2\) or \(m^2\)  -
\(A_d\) - area differential \(in^2\) or \(ft^2\) \(mm^2\) or \(m^2\) \(mm^2\) or \(m^2\)  -
\(f_a\) - area gradient - - -  -
\(\Delta A\)  - area thermal expansion \(in^2\) \(mm^2\) \(mm^2\)   -
\(\alpha_a\) alpha area thermal expansion coefficient \(\large{ \frac{in^2}{in^2\;F} }\) \(\large{ \frac{mm^2}{mm^2-C} }\) \(mm^2-mm^{-2}-C^{-1}\)  -
\(Ar\) - Arrhenius number dimensionless dimensionless dimensionless  -
\(k\) - Arrhenius equation - \(\large{ \frac{mol}{L-s} }\) \(mol- L^{-1}-s^{-1}\) -
\(\rho\) rho atmosphere density \(\large{\frac{lbm}{ft^3}}\) \(\large{\frac{kg}{m^3}}\) \(kg-m^{-3}\)  -
\(p_a\), \(\;p_{atm}\) - atmospheric pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\)  -
\(m_a\) - atomic mass - - -  -
\(m_u\) - atomic mass constant \(lbm\) \(kg\) \(kg\) \(1.660\;539\;066\;60\;(50)\;x\;10^{-27}\) \(kg\)
\(u\) - atomic mass unit \(lbm\) \(kg\) \(kg\)  -
\(Z\) - atomic number dimensionless dimensionless dimensionless  -
\(N\) - atomic number density - \(\large{\frac{atoms}{cm^2}}\) \(atoms-cm^{-2}\) -
\(A\) - atomic weight - - -  -
\(p_a\) - atmospheric pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(p_a\) - atmospheric pressure of moist air \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(T_a\) - atmospheric temperature \(F\) \(C\) \(x+273.15\;K\) -
\(A\) - Atwood number dimensionless dimensionless dimensionless  -
\(Nv\) - Avagadro's number moles moles moles  -
\(\Phi\) Phi availability function - - -  -
\(\bar {a}\), \(\;a_a\) - average acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\)  \(m - s^{-2}\)   -
\(\bar {\alpha} \) alpha average angular acceleration \(\large{\frac{deg}{sec^2}}\) \(\large{\frac{rad}{s^2}}\)  \(rad - s^{-2}\)   -
\(v_a\), \(\;\bar{\omega}\) omega average angular velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\) \(m - s^{-1}\)  -
\(v_a\), \(\;\bar{\omega}\) omega average angular velocity change in velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)  \(m - s^{-1}\) -
\(\bar {F}\), \(\;F_a\) - average force \(lbf\) \(N\) \(kg - m - s^{-2}\)  -
\(mw\) - average mole rate - - - -
\(\bar {u}\), \(\;v_a\) - average speed \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\) \(m - s^{-1}\)  -
\(\sigma_{avg}\) sigma average stress of weld \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(\bar {v}\), \(\;v_a\) - average velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\) \(m - s^{-1}\)  -
\(\bar{v}\) - average velocity change in velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)  \(m - s^{-1}\) -
\(v_a\) - average axial velocity of water flow \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)  \(m - s^{-1}\)  -
- - Avogadro's law \(mol\) \(mol\) \(mol\)  -
\(L\), \(\;N_a\) - Avogadro constant \(\large{\frac{count}{mol}}\) \(\large{\frac{count}{mol}}\)  \(count - mol^{-1}\)  \(6.022\;141\;29\;(27) \;x\; 10^{23}\) \(\large{\frac{count}{mol}}\)
\(D_a\) - axial diffusivity - - -  -
\(P\) - axial force \(lbf\) \(N\) \(kg - m - s^{-2}\)  -
\(P\) - axial load \(lbf\) \(N\) \(kg - m - s^{-2}\) -
\(k\) - axial stiffness \(lbf\) \(N\) \(kg - m - s^{-2}\) -
\(F\) - axial thrust \(lbf\) \(N\) \(kg - m - s^{-2}\) -
\(\epsilon_a\), \(\;\epsilon\) epsilon axial strain (longitudinal strain) \(\large{\frac{in}{in}}\) \(\large{\frac{mm}{mm}}\)  \(mm - mm^{-1}\)   -
Symbol Greek Symbol Definition English Metric SI  Value

 

Piping Designer Logo Slide 1