Formula Symbols - B

on . Posted in Nomenclature & Symbols for Engineering, Mathematics, and Science

Mathematics and Management Rules and Symbols

"B" Formula Symbols

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

SymbolGreek SymbolDefinitionEnglishMetricSIValue
\(Ba\) - Bagnold number dimensionless dimensionless dimensionless  -
\(Ba\) - Barlow's formula \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\)  -
\(b\) - base - - -  -
\(\Delta\) Delta beam deflection, an increment \(in\) \(mm\) \(mm\)  -
\(\Delta_{LL}\) Delta beam deflection due to live load \(in\) \(mm\) \(mm\)  -
\(\Delta_{TL}\) Delta beam deflection due to total load \(in\) \(mm\) \(mm\)  -
\(\Delta_{max}\) Delta beam deflection maximum calculated \(in\) \(mm\) \(mm\)  -
\(\tau\) tau beam shear stress \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(A_p\) - bearing area \(in^2\) or \(ft^2\) \(mm^2\) or \(m^2\) \(mm^2\) or \(m^2\)  -
\(Be\) - Bejan number dimensionless  -
\(b\) - belt width \(in\) \(mm\) \(mm\)  -
\(BA\) - bend allowance \(in\) \(mm\) \(mm\) -
\(\theta\) theta bend angle \(deg\) \(rad\) \(rad\) -
\(BD\) - bend deduction \(in\) \(mm\) \(mm\) -
\(BM\) - bending momernt \(\large{\frac{lbf}{sec}}\) \(\large{\frac{kg-m}{s}}\) \(kg - m - s^{-1}\) -
\(\sigma_b\) sigma bending stress \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(Be\) - Bernoulli's equation \(\large{\frac{lbm}{ft^3}}\) \(\large{\frac{kg}{m^3}}\) \(kg - m^{-3}\)  -
\(Bm\) - Bingham number dimensionless dimensionless dimensionless  -
\(k_b\) - binary rate coefficient - - -  -
\(Bi\) - Biot number dimensionless dimensionless dimensionless  -
\(Bl\), \(\;B\) - Blake number dimensionless dimensionless dimensionless  -
\(u_k\) - block wave function - - -  -
\(Bo\), \(\;Bd\) - Bodenstein number dimensionless dimensionless dimensionless  -
\(\mu_b\) mu Bohr magneton - \(\large{ \frac{J}{T} }\) \(J - T^{-1}\)   \(9.274\;009\;994\;(57)\;x\;10^{-24}\) \(\large{ \frac{J}{T} }\)
\(a_o\)   Bohr radius \(ft\) \(m\) \(m\) \(5.291\;772\;109 \;03\;x\;10^{-11}\) \(m\)
\(k\), \(\;k_b\) - Boltzmann constant \(\large{ \frac{lbm-ft^2}{sec^2} }\) \(\large{ \frac{kJ}{mol-K} }\) \(kJ - mol^{-1} - K^{-1}\)  \(1.380\;648\;52 \;x \;10^{-23}\) \(\large{ \frac{kJ}{mol-K} }\)
\(H\) - Boltzmann function - - -  -
\(Bo\) - Bond number dimensionless dimensionless dimensionless  -
\(\Delta E\)   Borda-Carnot equation \(lbf-ft\) \(J\) \(kg - m^2 - s^{-2}\)  -
\(BORE\) - bore \(in\) \(mm\) \(mm\)  -
\(A\) - bore factor - -    -
- - Boyles law \(\large{\frac{lbf}{in^2}}\) \(\large{\frac{N}{m^2}}\) \(N - m^{-2}\)  -
\(\upsilon\) upsilon Bragg angle - - -  -
\(b\) - brake dimension \(in\) \(mm\) \(mm\)  -
\(BHP\), \(\;HP_b\) - brake horsepower \(\large{\frac{lbf-ft}{sec}}\) \(\large{\frac{J}{s}}\) \(J - s^{-1}\)   -
\(BkW\) - brake kilowatts - - -  -
\(B_r\) - brake reaction distance \(ft\) \(m\) \(m\) -
\(t\) - brake reaction time \(sec\) \(s\) \(s\) -
\(BSFC\) - brake specific fuel consumption \(\large{\frac{lbm}{hp-hr}}\) \(\large{\frac{kg}{kW-h}}\) \(kg - kW^{-1} - h^{-1}\)  -
\(B_d\) - braking distance \(ft\) \(m\) \(m\) -
\(B_d\) - Braking distance on grade \(ft\) \(m\) \(m\) -
\(BHN\), \(\;HB\) - Brinell hardness number \(\large{\frac{lbm}{in^2}}\) \(\large{\frac{kg}{mm^2}}\) \(kg - mm^{-2}\)  -
\(Br\) - Brinkman number dimensionless dimensionless dimensionless  -
  - Brownell-Katz number dimensionless dimensionless dimensionless  -
\(k_{cr}\) - buckling coefficient dimensionless dimensionless dimensionless -
\(Y\) - bulk density \(\large{ \frac{lbm}{ft^3} }\) \(\large{ \frac{kg}{m^3} }\) \(kg - m^{-3}\) -
\(B\), \(\;K\) - bulk modules \(\large{\frac{lbm}{in^2}}\)  \(Pa\) \(kg- m^{-1}-s^{-2}\)  -
\(B\), \(\;K\) - bulk modules elasticity \(\large{\frac{lbm}{in^2}}\)  \(Pa\) \(kg- m^{-1}-s^{-2}\)  -
\(\theta\) theta bulk strain \(\large{\frac{in}{in}}\)  \(\large{\frac{mm}{mm}}\)  \(mm - mm^{-1}\)  -
\(T_b\), \(\;T_{\infty}\) - bulk temperature \( F\) \(C\) \(x+273.15\;K\)  -
\( \gamma ' \) gamma bulk unit weight \(\large{ \frac{lbm}{ft^3} }\) \(\large{ \frac{N}{m^3} }\) \(N - m^{-3}\) -
\(B\) - buoyancy \(lbf\) \(N\) \(kg - m - s^{-2}\)  -
\(B\), \(\;F_b\) - buoyancy force \(lbf\) \(N\) \(kg - m - s^{-2}\)  -
\(m_b\) - buoyancy mass \(lbm\) \(kg\) \(kg\)  -
\(\gamma '\) gamma buoyant unit weight \(\large{ \frac{lbm}{ft^3} }\) \(\large{ \frac{N}{m^3} }\) \(N- m^{-3}\) -
\(b\) - Burgers vector - - -  -
\(p_b\) - burst pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\)  -
\(\sigma_{avg}\) sigma buttweld under axial and transverse loading \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(BF\) - bypass factor - - -  -
Symbol Greek Symbol Definition English Metric  SI Value

 

Piping Designer Logo Slide 1