Formula Symbols - H

on . Posted in Nomenclature & Symbols for Engineering, Mathematics, and Science

Mathematics and Management Rules and Symbols

"H" Formula Symbols

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

SymbolGreek SymbolDefinitionEnglishMetricSIValue
\(Hg\) - Hagen number dimensionless dimensionless dimensionless -
\(\Delta p\) - Hagen–Poiseuille \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(T_{\frac{1}{2}}\), \(\;\tau_{\frac{1}{2}}\) tau half life - - -  -
\(A_h\), \(\;R_h\) - Hall coefficient - - -  -
\(H\) - Hamiltonian function - - -  -
\(Ha\)  - Hartmann number dimensionless dimensionless dimensionless -
\(E_h\)  - Hartree energy  \(lbf-ft\) \(J\) \(kg - m^2 - s^{-2}\) \(4.359\;744\;722\;2071\;(85)\;x\;10^{-18}\) \(J\)
\(Ha\)  - Hatta number dimensionless dimensionless dimensionless -
\(P_h\)  - Havnes number dimensionless dimensionless dimensionless -
\(C\) - Hazen-Williams coefficient dimensionless dimensionless dimensionless -
\(Q\) - Hazen-Williams flow rate \(\large{\frac{ft^3}{sec}}\) \(\large{\frac{m^3}{s}}\) \(m^3-s^{-1}\) -
\(p_d\) - Hazen-Williams flow through a pressurized pipe \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(v\) - Hazen-Williams flow through a open channel \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\) \(m-s^{-1}\)  -
\(h_f\) - Hazen-Williams head loss due to friction \(ft\) \(m\) \(m\) -
\(m\)  - Hazen-Williams hydraulic grade \(ft\) \(m\) \(m\) -
\(r_h\)  - Hazen-Williams hydraulic radius \(in\) \(mm\) \(mm\)  -
\(v\)  - Hazen-Williams mean flow velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\) \(m - s^{-1}\)  -
\(d\)  - Hazen-Williams pipe inside diameter \(in\) \(mm\) \(mm\)  -
\(hc\) - hc constant -
\(h\) - head \(ft\) \(m\) \(m\) -
 \(h_f\) - head friction loss in fittings and valves   dimensionless  dimensionless dimensionless -
\(h_f\) - head fractional resistance - - - -
\(HGV\) - head gasket volume \(in^3\)  \(mm^3\)  \(mm^3\)  \(HGV\)-
\(h_l\) - head loss \(ft\) \(m\) \(m\) -
\(h_f\) - head loss due to ftiction \(ft\) \(m\) \(m\) -
\(p\) - head pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg-m^{-1}-s^{-2}\) -
 \(v\) - head velocity \(\large{\frac{ft}{sec}}\)  \(\large{\frac{m}{s}}\) \(m-s^{-1}\) -
\(h_{dv}\) - head velocity discharge \(ft\) \(m\) \(m\) -
\(h_{sv}\) - head velocity suction \(ft\) \(m\) \(m\) -
\(Q\) - heat \(\large{\frac{Btu}{lbm}}\) \(\large{\frac{kJ}{kg}}\) \(kJ-kg^{-1}\) -
 \(\partial\)  partial heat as a path function - - - -
\(C\), \(\;c_p\) - heat capacity \(\large{\frac{Btu}{F}}\) \(\large{\frac{kJ}{K}}\) \(kJ-K^{-1}\)   -
\(C_p\) - heat capacity at constant pressure \(\large{\frac{Btu}{F}}\) \(\large{\frac{kJ}{K}}\) \(kJ-K^{-1}\)   -
\(C_v\) - heat capacity at constant volume \(\large{\frac{Btu}{F}}\) \(\large{\frac{kJ}{K}}\) \(kJ-K^{-1}\)   -
\(\gamma\), \(\;\kappa\), \(\;k\) gamma, kappa heat capacity ratio dimensionless dimensionless dimensionless -
\(Q_c\) - heat conduction \(\large{\frac{Btu}{hr}}\) \(W\) \(kg-m^2-s^{-3}\) -
\(\lambda\) lambda heat conductivity - - - -
\(C_p\) - heat constant pressure - - - -
\(C_v\) - heat constant volume - - - -
\(q\) - heat content \(\large{\frac{Btu}{lbm}}\) \(\large{\frac{J}{kg}}\) \(J-kg^{-1}\) -
\(Q\) - heat convection - - - -
\(\Delta Q\) - heat differential \(\large{\frac{Btu}{lbm}}\) \(\large{\frac{J}{kg}}\) \(J-kg^{-1}\)  -
\(\kappa\) kappa heat diffusivity \(\large{\frac{ft^2}{sec}}\) \(\large{\frac{m^2}{s}}\) \(m^2-s^{-1}\)  -
\(Q\), \(\;q\) - heat energy - - - -
\(Q\), \(\;Q_f\), \(\;\Phi\) Phi heat flow rate \(\large{\frac{Btu}{hr}}\) \(W\) \(kg-m^2-s^{-3}\) -
\(Q"\) - heat flux \(\large{\frac{Btu}{hr-ft^2}}\)  \(\large{\frac{W}{m^2}}\) \(W-m^{-2}\) -
\(q\) - heat loss \(F\) \(C\) \(x+273.15\;K\) -
\(K\) - heat loss coefficient of a device dimensionless dimensionless dimensionless -
\(d\) - heat penetration \(in\) \(mm\) \(mm\) -
\(Q\), \(\;\phi\) phi heat radiation - - - -
\(HRR\) - heat release rate \(\large{\frac{Btu}{ft^2-hr}}\) \(\large{\frac{W}{m^2}}\) \(W-m^{-2}\) -
\(Q\) - heat transfer \(\large{\frac{Btu}{hr}}\) \(W\) \(kg-m^2-s^{-3}\) -
\(Q_c\) - heat transfer by conduction \(\large{\frac{Btu}{hr}}\) \(W\) \(kg-m^2-s^{-3}\) -
\(R_t\) - heat transfer by conduction resistance through a cylindrical wall \(\large{\frac{hr-F}{Btu}}\) \(\large{\frac{K}{W}}\)  \(K-W^{-1}\) -
 \(Q_c\)  - heat transfer by conduction through a cylindrical wall \(\large{\frac{Btu}{hr}}\)  \(W\) \(kg-m^2-s^{-3}\)  -
 \(Q_c\) - heat transfer by conduction through a plane wall \(\large{\frac{Btu}{hr}}\)  \(W\) \(kg-m^2-s^{-3}\) -
\(Q_c\) - heat transfer by convection \(\large{\frac{Btu}{hr}}\) \(W\) \(kg-m^2-s^{-3}\) -
\(Q_r\) - heat transfer by radiation \(\large{\frac{Btu}{hr}}\) \(W\) \(kg-m^2-s^{-3}\) -
\(h\), \(\;h_c\) - heat transfer coefficient \(\large{\frac{Btu}{hr-ft^2-F}}\)  \(\large{\frac{W}{m^2-K}}\) \(W-m^{-2} -K^{-1}\) -
\(h_{wall}\) - heat transfer coefficient of a pipe wall \(\large{\frac{Btu}{hr-ft^2-F}}\)  \(\large{\frac{W}{m^2-K}}\) \(W-m^{-2} -K^{-1}\) -
\(Q_t\) - heat transfer rate \(\large{\frac{Btu}{hr}}\) \(W\) \(kg-m^2-s^{-3}\) -
\(Q\) - heat transfer to a system \(\large{\frac{Btu}{hr}}\) \(W\) \(kg-m^2-s^{-3}\) -
\(H_v\) - heat of vaporization \(\large{\frac{Btu}{lbm}}\) \(\large{\frac{J}{kg}}\) \(J-kg^{-1}\) -
\(HV\) - heating value \(\large{\frac{Btu}{lbm}}\) \(\large{\frac{kJ}{kg}}\) \(J-kg^{-1}\) -
\(h\) - height \(ft\) or \(in\) \(m\) or \(mm\) \(m\) or \(mm\) -
\(h_1\) - height of drivers' eyes above the roadway surface \(ft\) \(m\) \(m\) -
\(h_2\) - height of object above the roadway surface \(ft\) \(m\) \(m\) -
\(He\) - Hedstrom number dimensionless dimensionless dimensionless -
\(h\) - height of fluid column \(ft\) or \(in\) \(m\) or \(mm\) \(m\) or \(mm\) -
\(A\) - Helmholtz function - - - -
\(He\) - Helmholtz number dimensionless dimensionless dimensionless -
\(C\) - Henry's law \(\large{\frac{mol}{gal}}\) \(\large{\frac{mol}{L}}\) \(mol-L^{-1}\) -
\(H_s\) - Henry's law constant (solubility) - \(\large{\frac{mol}{m^3-Pa}}\) \(mol-m^{-3}-Pa^{-1}\) -
\(H_v\) - Henry's law constant (volatility) - \(\large{\frac{m^3-Pa}{mol}}\) \(m^3-Pa-mol^{-1}\) -
\(HHV\) - higher heating value \(\large{\frac{MMBtu}{lbm}}\) \(\large{\frac{W}{m^2}}\)  \(W-m^{-2}\) -
\(\sigma_h\) sigma hoop stress \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg-m^{-1}-s^{-2}\) -
\(H\) - horizontal cable force \(lbf\) \(N\) \(kg - m - s^{-2}\) -
\(x\) - horizontal distance \(ft\) \(m\) \(m\) -
\(x\) - horizontal distance from reaction to point on beam \(in\) \(mm\) \(mm\) -
\(x\) - horizontal position \(ft\) \(m\) \(m\) -
\(R\) - horizontal range of a projectile \(ft\) \(m\) \(m\) -
\(H\) - horizontal reaction load at bearing load \(lbf\) \(N\) \(kg - m - s^{-2}\) -
\(HP\), \(\;hp\) - horsepower \(\large{\frac{lbf-ft}{sec}}\) \(\large{\frac{J}{s}}\) \(J-s^{-1}\) -
\(HWD\) - hot well depression - - - -
\(H_0\) - Hubble constant - \(\large{\frac{1}{s}}\)  \(1-s^{-1}\) \(2.25\;x\;10^{-18}\) \(\large{\frac{1}{s}}\)
\(\omega\) omega humidity ratio \(\large{\frac{lbm}{lbm}}\) \(\large{\frac{kg}{kg}}\) \(kg-kg^{-1}\) -
\(k\) - hydraulic conductivity \(\large{\frac{ft}{day}}\) \(\large{\frac{m}{day}}\) \(m-day^{-1}\) -
\(h_d\) - hydraulic depth \(ft\) \(m\) \(m\) -
\(d_h\) - hydraulic diameter \(ft\) \(m\) \(m\) -
\(d_h\)  - hydraulic diameter of a duct, pipe or tube \(in\)  \(mm\)  \(mm\)  -
\(d_h\)  - hydraulic diameter of a rectangular tube  \(ft\)  \(m\)  \(m\) -
\(d_h\)   - hydraulic diameter of a right triangle  \(ft\)  \(m\)  \(m\)  -
 \(d_h\) - hydraulic diameter of a square tube  \(in\)  \(mm\)  \(mm\)  -
 \(d_h\) - hydraulic diameter of a tube within a tube  \(in\)  \(mm\)  \(mm\) -
\(d_h\)   - hydraulic diameter of an ellipse  \(in\)  \(mm\)  \(mm\) -
\(d_h\)  - hydraulic diameter of an isosceles triangle  \(ft\)  \(m\)  \(m\)  -

\(n_h\)

  hydraulic efficiency dimensionless dimensionless dimensionless  -
\(E_h\) - hydraulic energy \(lbf-ft\) \(J\) \(kg - m^2 - s^{-2}\) -
\(i\) - hydraulic gradient dimensionless dimensionless dimensionless -
 \(Q\) - hydraulic gradient flow rate \(\large{\frac{ft^3}{sec}}\) \(\large{\frac{m^3}{s}}\)  \(m^3-s^{-1}\) -
\(h\) - hydraulic head \(ft\)  \(m\) \(m\)  
\(HHP\), \(\;HP_h\) - hydraulic horsepower \(\large{\frac{lbf-ft}{sec}}\) \(\large{\frac{J}{s}}\) \(J-s^{-1}\) -
\(P_h\) - hydraulic power \(\large{\frac{lbm-ft^2}{sec}}\) \(\large{\frac{kg-m^2}{s}}\)  \(kg-m^2-s^{-1}\) -
\(n_h\) - hydraulic pump efficiency dimensionless dimensionless dimensionless -
\(r_h\) - hydraulic radius \(ft\) \(m\) \(m\) -
\(r_h\)  - hydraulic radius of a partially full pipe (less than half full) \(in\) \(mm\)  \(mm\) -
\(r_h\)   - hydraulic radius of a partially full pipe (more than half full) \(in\) \(mm\) \(mm\) -
\(r_h\)  - hydraulic radius of a pipe \(in\) \(mm\) \(mm\) -
\(r_h\)   - hydraulic radius of a rectangular channel \(ft\)  \(m\) \(m\) -
 \(r_h\) - hydraulic radius of a trapezoidal channel (equal side slopes) \(ft\) \(m\) \(m\) -
\(r_h\)  - hydraulic radius of a rapezoidal channel (unequal side slopes) \(ft\) \(m\) \(m\) -
\(r_h\)   - hydraulic radius of a triangular channel \(ft\) \(m\)  \(m\) -
\(S\) - hydraulic slope \(ft\) \(m\) \(m\) -
\(H\) - hydrogen density \(\large{\frac{lbm}{ft^3}}\) \(\large{\frac{kg}{m^3}}\)  \(kg-m^{-3}\) -
\(H\) - hydrogen gas - - - -
\(HP\) - hydrostatic pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(HDS\) - hydrostatic stress \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
-  - hydrostatic weighting  -  - -  -
\(\Delta \nu_{cs}\)  \nu hyperfine transition frequency of 133Cs \(Hz\) \(Hz\)   \(s^{-1}\)  \(9\;192\;631\;770\) \(Hz\)
Symbol Greek Symbol Drfinition English Metric  SI Value

 

Piping Designer Logo Slide 1