Formula Symbols - H

Written by Jerry Ratzlaff on . Posted in Nomenclature & Symbols for Engineering, Mathematics, and Science

Nomenclature and Symbols Glossary

Algebra Symbols, Angle and Line Symbols, ASCII Characters, Basic Math Symbols, Bracket Symbols, Equivalence Symbols, Geometry Symbols, Greek Alphabet, HTML Colors, Miscellaneous Symbols, Roman Numerals, Set Symbols, Square Root Symbols

 

Formula Symbols

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

H

SymbolGreek SymbolDefinitionEnglishMetricSIValue
\(Hg\) - Hagen number dimensionless -
\(\Delta p\) - Hagen–Poiseuille \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(T_{\frac{1}{2}}\), \(\;\tau_{\frac{1}{2}}\) tau half life - - -  -
\(A_h\), \(\;R_h\) - Hall coefficient - - -  -
\(H\) - Hamiltonian function - - -  -
\(Ha\)  - Hartmann number dimensionless  -
\(E_h\)  - Hartree energy  \(lbf-ft\) \(J\) \(kg - m^2 - s^{-2}\) \(4.359\;744\;722\;2071\;(85)\;x\;10^{-18}\) \(J\)
\(Ha\)  - Hatta number dimensionless -
\(P_h\)  - Havnes number dimensionless -
\(C\) - Hazen-Williams coefficient dimensionless -
\(Q\) - Hazen-Williams flow rate \(\large{\frac{ft^3}{sec}}\) \(\large{\frac{m^3}{s}}\) \(m^3-s^{-1}\) -
\(p_d\) - Hazen-Williams flow through a pressurized pipe \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(v\) - Hazen-Williams flow through a open channel \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\) \(m-s^{-1}\)  -
\(h_f\) - Hazen-Williams head loss due to friction \(ft\) \(m\) \(m\) -
\(m\)  - Hazen-Williams hydraulic grade \(ft\) \(m\) \(m\) -
\(r_h\)  - Hazen-Williams hydraulic radius \(in\) \(mm\) \(mm\)  -
\(v\)  - Hazen-Williams mean flow velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\) \(m - s^{-1}\)  -
\(d\)  - Hazen-Williams pipe inside diameter \(in\) \(mm\) \(mm\)  -
\(hc\) - hc constant -
\(h\) - head \(ft\) \(m\) \(m\) -
 \(h_f\) - head friction loss in fittings and valves   dimensionless  -
\(h_f\) - head fractional resistance - - - -
\(HGV\) - head gasket volume \(in^3\)  \(mm^3\)  \(mm^3\)  \(HGV\)-
\(h_l\) - head loss \(ft\) \(m\) \(m\) -
\(h_f\) - head loss due to ftiction \(ft\) \(m\) \(m\) -
\(p\) - head pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg-m^{-1}-s^{-2}\) -
 \(v\) - head velocity \(\large{\frac{ft}{sec}}\)  \(\large{\frac{m}{s}}\) \(m-s^{-1}\) -
\(h_{dv}\) - head velocity discharge \(ft\) \(m\) \(m\) -
\(h_{sv}\) - head velocity suction \(ft\) \(m\) \(m\) -
\(Q\) - heat \(\large{\frac{Btu}{lbm}}\) \(\large{\frac{kJ}{kg}}\) \(kJ-kg^{-1}\) -
 \(\partial\)  partial heat as a path function - - - -
\(C\), \(\;c_p\) - heat capacity \(\large{\frac{Btu}{F}}\) \(\large{\frac{kJ}{K}}\) \(kJ-K^{-1}\)   -
\(C_p\) - heat capacity at constant pressure \(\large{\frac{Btu}{F}}\) \(\large{\frac{kJ}{K}}\) \(kJ-K^{-1}\)   -
\(C_v\) - heat capacity at constant volume \(\large{\frac{Btu}{F}}\) \(\large{\frac{kJ}{K}}\) \(kJ-K^{-1}\)   -
\(\gamma\), \(\;\kappa\), \(\;k\) gamma, kappa heat capacity ratio dimensionless -
\(Q_c\) - heat conduction \(\large{\frac{Btu}{hr}}\) \(W\) \(kg-m^2-s^{-3}\) -
\(\lambda\) lambda heat conductivity - - - -
\(C_p\) - heat constant pressure - - - -
\(C_v\) - heat constant volume - - - -
\(q\) - heat content \(\large{\frac{Btu}{lbm}}\) \(\large{\frac{J}{kg}}\) \(J-kg^{-1}\) -
\(Q\) - heat convection - - - -
\(\Delta Q\) - heat differential \(\large{\frac{Btu}{lbm}}\) \(\large{\frac{J}{kg}}\) \(J-kg^{-1}\)  -
\(\kappa\) kappa heat diffusivity \(\large{\frac{ft^2}{sec}}\) \(\large{\frac{m^2}{s}}\) \(m^2-s^{-1}\)  -
\(Q\), \(\;q\) - heat energy - - - -
\(Q\), \(\;Q_f\), \(\;\Phi\) Phi heat flow rate \(\large{\frac{Btu}{hr}}\) \(W\) \(kg-m^2-s^{-3}\) -
\(Q"\) - heat flux \(\large{\frac{Btu}{hr-ft^2}}\)  \(\large{\frac{W}{m^2}}\) \(W-m^{-2}\) -
\(q\) - heat loss \(F\) \(C\) \(x+273.15\;K\) -
\(K\) - heat loss coefficient of a device dimensionless -
\(d\) - heat penetration \(in\) \(mm\) \(mm\) -
\(Q\), \(\;\phi\) phi heat radiation - - - -
\(HRR\) - heat release rate \(\large{\frac{Btu}{ft^2-hr}}\) \(\large{\frac{W}{m^2}}\) \(W-m^{-2}\) -
\(Q\) - heat transfer \(\large{\frac{Btu}{hr}}\) \(W\) \(kg-m^2-s^{-3}\) -
\(Q_c\) - heat transfer by conduction \(\large{\frac{Btu}{hr}}\) \(W\) \(kg-m^2-s^{-3}\) -
\(R_t\) - heat transfer by conduction resistance through a cylindrical wall \(\large{\frac{hr-F}{Btu}}\) \(\large{\frac{K}{W}}\)  \(K-W^{-1}\) -
 \(Q_c\)  - heat transfer by conduction through a cylindrical wall \(\large{\frac{Btu}{hr}}\)  \(W\) \(kg-m^2-s^{-3}\)  -
 \(Q_c\) - heat transfer by conduction through a plane wall \(\large{\frac{Btu}{hr}}\)  \(W\) \(kg-m^2-s^{-3}\) -
\(Q_c\) - heat transfer by convection \(\large{\frac{Btu}{hr}}\) \(W\) \(kg-m^2-s^{-3}\) -
\(Q_r\) - heat transfer by radiation \(\large{\frac{Btu}{hr}}\) \(W\) \(kg-m^2-s^{-3}\) -
\(h\), \(\;h_c\) - heat transfer coefficient \(\large{\frac{Btu}{hr-ft^2-F}}\)  \(\large{\frac{W}{m^2-K}}\) \(W-m^{-2} -K^{-1}\) -
\(h_{wall}\) - heat transfer coefficient of a pipe wall \(\large{\frac{Btu}{hr-ft^2-F}}\)  \(\large{\frac{W}{m^2-K}}\) \(W-m^{-2} -K^{-1}\) -
\(Q_t\) - heat transfer rate \(\large{\frac{Btu}{hr}}\) \(W\) \(kg-m^2-s^{-3}\) -
\(Q\) - heat transfer to a system \(\large{\frac{Btu}{hr}}\) \(W\) \(kg-m^2-s^{-3}\) -
\(H_v\) - heat of vaporization \(\large{\frac{Btu}{lbm}}\) \(\large{\frac{J}{kg}}\) \(J-kg^{-1}\) -
\(HV\) - heating value \(\large{\frac{Btu}{lbm}}\) \(\large{\frac{kJ}{kg}}\) \(J-kg^{-1}\) -
\(h\) - height \(ft\) or \(in\) \(m\) or \(mm\) \(m\) or \(mm\) -
\(h_1\) - height of drivers' eyes above the roadway surface \(ft\) \(m\) \(m\) -
\(h_2\) - height of object above the roadway surface \(ft\) \(m\) \(m\) -
\(He\) - Hedstrom number dimensionless -
\(h\) - height of fluid column \(ft\) or \(in\) \(m\) or \(mm\) \(m\) or \(mm\) -
\(A\) - Helmholtz function - - - -
\(He\) - Helmholtz number dimensionless -
\(C\) - Henry's law \(\large{\frac{mol}{gal}}\) \(\large{\frac{mol}{L}}\) \(mol-L^{-1}\) -
\(H_s\) - Henry's law constant (solubility) - \(\large{\frac{mol}{m^3-Pa}}\) \(mol-m^{-3}-Pa^{-1}\) -
\(H_v\) - Henry's law constant (volatility) - \(\large{\frac{m^3-Pa}{mol}}\) \(m^3-Pa-mol^{-1}\) -
\(HHV\) - higher heating value \(\large{\frac{MMBtu}{lbm}}\) \(\large{\frac{W}{m^2}}\)  \(W-m^{-2}\) -
\(\sigma_h\) sigma hoop stress \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg-m^{-1}-s^{-2}\) -
\(H\) - horizontal cable force \(lbf\) \(N\) \(kg - m - s^{-2}\) -
\(x\) - horizontal distance \(ft\) \(m\) \(m\) -
\(x\) - horizontal distance from reaction to point on beam \(in\) \(mm\) \(mm\) -
\(x\) - horizontal position \(ft\) \(m\) \(m\) -
\(R\) - horizontal range of a projectile \(ft\) \(m\) \(m\) -
\(H\) - horizontal reaction load at bearing load \(lbf\) \(N\) \(kg - m - s^{-2}\) -
\(HP\), \(\;hp\) - horsepower \(\large{\frac{lbf-ft}{sec}}\) \(\large{\frac{J}{s}}\) \(J-s^{-1}\) -
\(HWD\) - hot well depression - - - -
\(H_0\) - Hubble constant - \(\large{\frac{1}{s}}\)  \(1-s^{-1}\) \(2.25\;x\;10^{-18}\) \(\large{\frac{1}{s}}\)
\(\omega\) omega humidity ratio \(\large{\frac{lbm}{lbm}}\) \(\large{\frac{kg}{kg}}\) \(kg-kg^{-1}\) -
\(k\) - hydraulic conductivity \(\large{\frac{ft}{day}}\) \(\large{\frac{m}{day}}\) \(m-day^{-1}\) -
\(h_d\) - hydraulic depth \(ft\) \(m\) \(m\) -
\(d_h\) - hydraulic diameter \(ft\) \(m\) \(m\) -
\(d_h\)  - hydraulic diameter of a duct, pipe or tube \(in\)  \(mm\)  \(mm\)  -
\(d_h\)  - hydraulic diameter of a rectangular tube  \(ft\)  \(m\)  \(m\) -
\(d_h\)   - hydraulic diameter of a right triangle  \(ft\)  \(m\)  \(m\)  -
 \(d_h\) - hydraulic diameter of a square tube  \(in\)  \(mm\)  \(mm\)  -
 \(d_h\) - hydraulic diameter of a tube within a tube  \(in\)  \(mm\)  \(mm\) -
\(d_h\)   - hydraulic diameter of an ellipse  \(in\)  \(mm\)  \(mm\) -
\(d_h\)  - hydraulic diameter of an isosceles triangle  \(ft\)  \(m\)  \(m\)  -

\(n_h\)

  hydraulic efficiency dimensionless     -
\(E_h\) - hydraulic energy \(lbf-ft\) \(J\) \(kg - m^2 - s^{-2}\) -
\(i\) - hydraulic gradient dimensionless -
 \(Q\) - hydraulic gradient flow rate \(\large{\frac{ft^3}{sec}}\) \(\large{\frac{m^3}{s}}\)  \(m^3-s^{-1}\) -
\(h\) - hydraulic head \(ft\)  \(m\) \(m\)  
\(HHP\), \(\;HP_h\) - hydraulic horsepower \(\large{\frac{lbf-ft}{sec}}\) \(\large{\frac{J}{s}}\) \(J-s^{-1}\) -
\(P_h\) - hydraulic power \(\large{\frac{lbm-ft^2}{sec}}\) \(\large{\frac{kg-m^2}{s}}\)  \(kg-m^2-s^{-1}\) -
\(n_h\) - hydraulic pump efficiency dimensionless -
\(r_h\) - hydraulic radius \(ft\) \(m\) \(m\) -
\(r_h\)  - hydraulic radius of a partially full pipe (less than half full) \(in\) \(mm\)  \(mm\) -
\(r_h\)   - hydraulic radius of a partially full pipe (more than half full) \(in\) \(mm\) \(mm\) -
\(r_h\)  - hydraulic radius of a pipe \(in\) \(mm\) \(mm\) -
\(r_h\)   - hydraulic radius of a rectangular channel \(ft\)  \(m\) \(m\) -
 \(r_h\) - hydraulic radius of a trapezoidal channel (equal side slopes) \(ft\) \(m\) \(m\) -
\(r_h\)  - hydraulic radius of a rapezoidal channel (unequal side slopes) \(ft\) \(m\) \(m\) -
\(r_h\)   - hydraulic radius of a triangular channel \(ft\) \(m\)  \(m\) -
\(S\) - hydraulic slope \(ft\) \(m\) \(m\) -
\(H\) - hydrogen density \(\large{\frac{lbm}{ft^3}}\) \(\large{\frac{kg}{m^3}}\)  \(kg-m^{-3}\) -
\(H\) - hydrogen gas - - - -
\(HP\) - hydrostatic pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(HDS\) - hydrostatic stress \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
    hydrostatic weighting        
\(\Delta \nu_{cs}\)  \nu hyperfine transition frequency of 133Cs \(Hz\) \(Hz\)   \(s^{-1}\)  \(9\;192\;631\;770\) \(Hz\)
Symbol Greek Symbol Drfinition English Metric   Value

 

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

 

Piping Designer Logo Slide 1